BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1323563)

  • 21. Degradative inactivation of the peroxisomal enzyme, alcohol oxidase, during adaptation of methanol-grown Candida boidinii to ethanol.
    Hill DJ; Hann AC; Lloyd D
    Biochem J; 1985 Dec; 232(3):743-50. PubMed ID: 3911950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the respiratory chain in Ethanologenic Zymomonas mobilis with a cyanide-resistant bd-type ubiquinol oxidase as the only terminal oxidase and its possible physiological roles.
    Sootsuwan K; Lertwattanasakul N; Thanonkeo P; Matsushita K; Yamada M
    J Mol Microbiol Biotechnol; 2008; 14(4):163-75. PubMed ID: 18089934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of the electron transport chain of an obligate methylotroph, strain 4025.
    Vrdoljak M; Froud S
    Int J Biochem; 1982; 14(11):1019-23. PubMed ID: 6292016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The electron-transport chains of the obligate methylotroph Methylophilus methylotrophus.
    Cross AB; Anthony C
    Biochem J; 1980 Nov; 192(2):429-39. PubMed ID: 7236221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane-bound respiratory of Spirillum itersonii.
    Dailey HA
    J Bacteriol; 1976 Sep; 127(3):1286-91. PubMed ID: 182674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of ubiquinone in the respiratory chain of Acetobacter xylinum.
    Benziman M; Goldhamer H
    Biochem J; 1968 Jun; 108(2):311-6. PubMed ID: 4298994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Na(+)-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles.
    Park C; Moon JY; Cokic P; Webster DA
    Biochemistry; 1996 Sep; 35(36):11895-900. PubMed ID: 8794772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis.
    Wu X; Yao H; Liu Q; Zheng Z; Cao L; Mu D; Wang H; Jiang S; Li X
    Appl Biochem Biotechnol; 2018 Sep; 186(1):217-232. PubMed ID: 29552715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nature of the specificity of alcohol coupling to L-alanine transport into isolated membrane vesicles of a marine pseudomonad.
    Sprott GD; MacLeod RA
    J Bacteriol; 1974 Mar; 117(3):1043-54. PubMed ID: 4360536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108.
    Yakushi T; Fukunari S; Kodama T; Matsutani M; Nina S; Kataoka N; Theeragool G; Matsushita K
    Appl Microbiol Biotechnol; 2018 May; 102(10):4549-4561. PubMed ID: 29616313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trypsin proteolysis of the cytochrome d complex of Escherichia coli selectively inhibits ubiquinol oxidase activity while not affecting N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity.
    Lorence RM; Carter K; Gennis RB; Matsushita K; Kaback HR
    J Biol Chem; 1988 Apr; 263(11):5271-6. PubMed ID: 2833503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The electron transport system of Acetobacter suboxydans with particular reference to cytochrome.
    Daniel RM
    Biochim Biophys Acta; 1970 Sep; 216(2):328-41. PubMed ID: 5504630
    [No Abstract]   [Full Text] [Related]  

  • 33. The effect of EDTA and related chelating agents on the oxidation of methanol by the methylotrophic bacterium, Methylophilus methylotrophus.
    Carver MA; Humphrey KM; Patchett RA; Jones CW
    Eur J Biochem; 1984 Feb; 138(3):611-5. PubMed ID: 6420156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptome response to different carbon sources in Acetobacter aceti.
    Sakurai K; Arai H; Ishii M; Igarashi Y
    Microbiology (Reading); 2011 Mar; 157(Pt 3):899-910. PubMed ID: 21081762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic organization of Acetobacter for acetic acid fermentation.
    Beppu T
    Antonie Van Leeuwenhoek; 1993-1994; 64(2):121-35. PubMed ID: 8092854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of cytochrome a in iron oxidation of a moderately thermophilic iron-oxidizing bacterium, strain TI-1.
    Takai M; Kamimura K; Sugio T
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1541-7. PubMed ID: 10540740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic control analysis of the bc1 complex of Saccharomyces cerevisiae: effect on cytochrome c oxidase, respiration and growth rate.
    Boumans H; Berden JA; Grivell LA; van Dam K
    Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):877-83. PubMed ID: 9560317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The oxidation of glucose by Acinetobacter calcoaceticus: interaction of the quinoprotein glucose dehydrogenase with the electron transport chain.
    Beardmore-Gray M; Anthony C
    J Gen Microbiol; 1986 May; 132(5):1257-68. PubMed ID: 3021895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detoxification of formaldehyde by acetic acid bacteria.
    GrĂ¼ndig MW; Babel W
    Zentralbl Hyg Umweltmed; 1989 Aug; 188(5):466-74. PubMed ID: 2775425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resonance Raman, infrared, and EPR investigation on the binuclear site structure of the heme-copper ubiquinol oxidases from Acetobacter aceti: effect of the heme peripheral formyl group substitution.
    Tsubaki M; Matsushita K; Adachi O; Hirota S; Kitagawa T; Hori H
    Biochemistry; 1997 Oct; 36(42):13034-42. PubMed ID: 9335565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.