BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1323563)

  • 41. The respiratory chain of a newly isolated Methylomonas Pl1.
    Drabikowska AK
    Biochem J; 1977 Nov; 168(2):171-8. PubMed ID: 413543
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Studies on acetic acid bacteria. IV. Purification and properties of a new type of alcohol dehydrogenase, alcohol-cytochrome-553 reductase.
    NAKAYAMA T
    J Biochem; 1961 Mar; 49():240-51. PubMed ID: 13727684
    [No Abstract]   [Full Text] [Related]  

  • 43. The terminal respiratory chain of the methylotrophic bacterium Methylophilus methylotrophus.
    Carver MA; Jones CW
    FEBS Lett; 1983 May; 155(2):187-91. PubMed ID: 6303840
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The electron transport chain of Bacterionema matruchotii.
    Broom MF; Shepherd MG; Sullivan PA
    Can J Microbiol; 1981 Oct; 27(10):1106-13. PubMed ID: 6274495
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, Gluconobacter suboxydans.
    Matsushita K; Kobayashi Y; Mizuguchi M; Toyama H; Adachi O; Sakamoto K; Miyoshi H
    Biosci Biotechnol Biochem; 2008 Oct; 72(10):2723-31. PubMed ID: 18838797
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability.
    Takemura H; Horinouchi S; Beppu T
    J Bacteriol; 1991 Nov; 173(22):7070-6. PubMed ID: 1657877
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically.
    Matsushita K; Yamada M; Shinagawa E; Adachi O; Ameyama M
    J Bacteriol; 1980 Jan; 141(1):389-92. PubMed ID: 6766443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases.
    Kanchanarach W; Theeragool G; Yakushi T; Toyama H; Adachi O; Matsushita K
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):741-51. PubMed ID: 19711069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. LOCALISATION AND DISTRIBUTION OF ALCOHOL-CYTOCHROME 553 REDUCTASE IN ACETIC ACID BACTERIA.
    NAKAYAMA T; DELEY J
    Antonie Van Leeuwenhoek; 1965; 31():205-19. PubMed ID: 14340586
    [No Abstract]   [Full Text] [Related]  

  • 50. Sequence of electron carriers in the process of methanol oxidation by a new obligate methylotrophic bacterium.
    Yang SS; Lee JS; Kim YM; Kim SW
    Biochem Mol Biol Int; 1998 Nov; 46(4):807-19. PubMed ID: 9844742
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Uncompetitive substrate inhibition and noncompetitive inhibition by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-nonyl-4-hydroxyquinoline-N-oxide (NQNO) is observed for the cytochrome bo3 complex: implications for a Q(H2)-loop proton translocation mechanism.
    Musser SM; Stowell MH; Lee HK; Rumbley JN; Chan SI
    Biochemistry; 1997 Jan; 36(4):894-902. PubMed ID: 9020789
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cytochrome c550 from Pseudomonas aeruginosa.
    Reichmann P; Görisch H
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):173-8. PubMed ID: 8380982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production.
    Kylmä AK; Granström T; Leisola M
    Appl Microbiol Biotechnol; 2004 Feb; 63(5):584-91. PubMed ID: 12898066
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii.
    Bormann C; Sahm H
    Arch Microbiol; 1978 Apr; 117(1):67-72. PubMed ID: 678013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quaternary structure of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa and its reoxidation with a novel cytochrome c from this organism.
    Schrover JM; Frank J; van Wielink JE; Duine JA
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):123-7. PubMed ID: 8382472
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tryptophan-136 in subunit II of cytochrome bo3 from Escherichia coli may participate in the binding of ubiquinol.
    Ma J; Puustinen A; Wikström M; Gennis RB
    Biochemistry; 1998 Aug; 37(34):11806-11. PubMed ID: 9718303
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.
    Sugio T; Hisazumi T; Kanao T; Kamimura K; Takeuchi F; Negishi A
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1584-91. PubMed ID: 16861791
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phage Acm1-mediated transduction in the facultatively methanol-utilizing Acetobacter methanolicus MB 58/4.
    Kiesel B; Wünsche L
    J Gen Virol; 1993 Sep; 74 ( Pt 9)():1741-5. PubMed ID: 8376955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.
    Bozdag A; Komives C; Flickinger MC
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1027-38. PubMed ID: 25952117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.