BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1323670)

  • 1. Potassium channels and regulation of proliferation of human melanoma cells.
    Nilius B; Wohlrab W
    J Physiol; 1992 Jan; 445():537-48. PubMed ID: 1323670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K+ channels and the intracellular calcium signal in human melanoma cell proliferation.
    Lepple-Wienhues A; Berweck S; Böhmig M; Leo CP; Meyling B; Garbe C; Wiederholt M
    J Membr Biol; 1996 May; 151(2):149-57. PubMed ID: 8661503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of potassium channels in intact human T lymphocytes.
    Pahapill PA; Schlichter LC
    J Physiol; 1992 Jan; 445():407-30. PubMed ID: 1380085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of a potassium-selective ion channel in human melanoma cells.
    Nilius B; Böhm T; Wohlrab W
    Pflugers Arch; 1990 Nov; 417(3):269-77. PubMed ID: 2177183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea.
    van Den Abbeele T; Teulon J; Huy PT
    Am J Physiol; 1999 Nov; 277(5):C913-25. PubMed ID: 10564084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of intracellular calcium by membrane potential in human melanoma cells.
    Nilius B; Schwarz G; Droogmans G
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1501-10. PubMed ID: 8279514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three potassium channels in rat posterior pituitary nerve terminals.
    Bielefeldt K; Rotter JL; Jackson MB
    J Physiol; 1992 Dec; 458():41-67. PubMed ID: 1302271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of potassium and chloride channels in the basolateral membrane of bovine nonpigmented ciliary epithelial cells.
    Edelman JL; Loo DD; Sachs G
    Invest Ophthalmol Vis Sci; 1995 Dec; 36(13):2706-16. PubMed ID: 7499093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed rectifier potassium channels in canine and porcine airway smooth muscle cells.
    Boyle JP; Tomasic M; Kotlikoff MI
    J Physiol; 1992 Feb; 447():329-50. PubMed ID: 1593449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic currents in normal and neurofibromatosis type 1-affected human Schwann cells: induction of tumor cell K current in normal Schwann cells by cyclic AMP.
    Fieber LA
    J Neurosci Res; 1998 Nov; 54(4):495-506. PubMed ID: 9822160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of renal tubule epithelial cells by simian virus-40 is associated with emergence of Ca(2+)-insensitive K+ channels and altered mitogenic sensitivity to K+ channel blockers.
    Teulon J; Ronco PM; Geniteau-Legendre M; Baudouin B; Estrade S; Cassingena R; Vandewalle A
    J Cell Physiol; 1992 Apr; 151(1):113-25. PubMed ID: 1373146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?
    DeCoursey TE; Chandy KG; Gupta S; Cahalan MD
    Nature; 1984 Feb 2-8; 307(5950):465-8. PubMed ID: 6320007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PACAP inhibits delayed rectifier potassium current via a cAMP/PKA transduction pathway: evidence for the involvement of I k in the anti-apoptotic action of PACAP.
    Mei YA; Vaudry D; Basille M; Castel H; Fournier A; Vaudry H; Gonzalez BJ
    Eur J Neurosci; 2004 Mar; 19(6):1446-58. PubMed ID: 15066141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-gated and Ca(2+)-activated K+ channels in intact human T lymphocytes. Noninvasive measurements of membrane currents, membrane potential, and intracellular calcium.
    Verheugen JA; Vijverberg HP; Oortgiesen M; Cahalan MD
    J Gen Physiol; 1995 Jun; 105(6):765-94. PubMed ID: 7561743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel large-conductance Ca(2+)-activated potassium channel and current in nerve terminals of the rat neurohypophysis.
    Wang G; Thorn P; Lemos JR
    J Physiol; 1992 Nov; 457():47-74. PubMed ID: 1284313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a delayed rectifier-like potassium current in the clonal rat pituitary cell line GH3.
    Simasko SM
    Am J Physiol; 1991 Jul; 261(1 Pt 1):E66-75. PubMed ID: 1858875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of maxi-K-channels in bovine trabecular meshwork and their activation by cyclic guanosine monophosphate.
    Stumpff F; Strauss O; Boxberger M; Wiederholt M
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1883-92. PubMed ID: 9286279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.
    Farley J; Rudy B
    Biophys J; 1988 Jun; 53(6):919-34. PubMed ID: 2456105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.