These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1323896)

  • 1. Cyclic GMP, calcium and photoreceptor sensitivity in mice heterozygous for the rod dysplasia gene designated "rd".
    Hussain AA; Willmott NJ; Voaden MJ
    Vision Res; 1992 Jan; 32(1):29-36. PubMed ID: 1323896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic GMP in the retinas of normal mice and those heterozygous for early-onset photoreceptor dystrophy.
    Doshi M; Voaden MJ; Arden GB
    Exp Eye Res; 1985 Jul; 41(1):61-5. PubMed ID: 2863161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species differences in the response of mammalian photoreceptor cyclic GMP and PIII to a reduction in calcium.
    Hussain AA; Willmott NJ; Voaden MJ
    Vision Res; 1992 May; 32(5):809-13. PubMed ID: 1318617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for reduced binding of cyclic GMP to cyclic GMP phosphodiesterase in photoreceptors of mice heterozygous for the rd gene.
    Voaden MJ; Willmott NJ
    Curr Eye Res; 1990 Jul; 9(7):643-51. PubMed ID: 2170076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of intracellular cyclic GMP concentration by light and calcium in electropermeabilized rod photoreceptors.
    Coccia VJ; Cote RH
    J Gen Physiol; 1994 Jan; 103(1):67-86. PubMed ID: 8169598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic expression of cyclic GMP phosphodiesterase activity defines abnormal photoreceptor differentiation in neurological mutants of inherited retinal degeneration.
    Fletcher RT; Sanyal S; Krishna G; Aguirre G; Chader GJ
    J Neurochem; 1986 Apr; 46(4):1240-5. PubMed ID: 3005510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium and cyclic nucleotide regulation in incubated mouse retinas.
    Cohen AI; Hall IA; Ferrendelli JA
    J Gen Physiol; 1978 May; 71(5):595-612. PubMed ID: 207816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones.
    Korenbrot JI; Rebrik TI
    Adv Exp Med Biol; 2002; 514():179-203. PubMed ID: 12596922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The determination of total cGMP levels in rod outer segments from intact toad photoreceptors in response to light superimposed on background and to consecutive flashes: a second light flash accelerates the dark recovery rate of cGMP levels in control media, but not in Na(+)-free, low Ca2+ medium.
    Cohen AI; Blazynski C
    Vis Neurosci; 1993; 10(1):73-9. PubMed ID: 8381020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin phosphorylation in developing normal and degenerative mouse retinas.
    Shuster TA; Farber DB
    Invest Ophthalmol Vis Sci; 1986 Feb; 27(2):264-8. PubMed ID: 3003003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia.
    Orr HT; Lowry OH; Cohen AI; Ferrendelli JA
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4442-5. PubMed ID: 188039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional and biochemical abnormalities in the retinas of mice heterozygous for the rd gene.
    Voaden MJ; Willmott NJ; Hussain AA; al-Mahdawi S
    Prog Clin Biol Res; 1989; 314():183-9. PubMed ID: 2558382
    [No Abstract]   [Full Text] [Related]  

  • 13. Guanosine 3',5'-cyclic monophosphate and the in vitro physiology of frog photoreceptor membranes.
    Woodruff ML; Bownds D; Green SH; Morrisey JL; Shedlovsky A
    J Gen Physiol; 1977 May; 69(5):667-79. PubMed ID: 194013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidestructive pathways triggered in photoreceptor cell death of the rd mouse as determined through gene expression profiling.
    Rohrer B; Pinto FR; Hulse KE; Lohr HR; Zhang L; Almeida JS
    J Biol Chem; 2004 Oct; 279(40):41903-10. PubMed ID: 15218024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cGMP concentration correlate with some, but not all, aspects of the light-regulated conductance of frog rod photoreceptors.
    Cote RH; Nicol GD; Burke SA; Bownds MD
    J Biol Chem; 1986 Oct; 261(28):12965-75. PubMed ID: 3020017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium regulates some, but not all, aspects of light adaptation in rod photoreceptors.
    Nicol GD; Bownds MD
    J Gen Physiol; 1989 Aug; 94(2):233-59. PubMed ID: 2507738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo cGMP levels in frog photoreceptor cells as a function of light exposure.
    Barbehenn EK; Klotz KL; Noelker DM; Nelson R; Chader GJ; Passonneau JV
    Exp Eye Res; 1986 Nov; 43(5):729-38. PubMed ID: 3026825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of light and dark adaptation on the levels of cyclic nucleotides in retinas of mice heterozygous for a gene for photoreceptor dystrophy.
    Ferrendelli JA; Cohen AI
    Biochem Biophys Res Commun; 1976 Nov; 73(2):421-7. PubMed ID: 187198
    [No Abstract]   [Full Text] [Related]  

  • 19. Light-induced reduction in cyclic GMP of retinal photoreceptor cells in vivo: abnormalities in the degenerative diseases of RCS rats and rd mice.
    Farber DB; Lolley RN
    J Neurochem; 1977 May; 28(5):1089-95. PubMed ID: 194017
    [No Abstract]   [Full Text] [Related]  

  • 20. The corneal ERG of the heterozygous retinal degeneration mouse.
    Low JC
    Graefes Arch Clin Exp Ophthalmol; 1987; 225(6):413-7. PubMed ID: 2824296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.