These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 1323903)

  • 21. Plasma melatonin, pinealocyte morphology, and surface receptors/antigen expression on macrophages/microglia in the pineal gland following a high-altitude exposure.
    Kaur C; Srinivasan KN; Singh J; Peng CM; Ling EA
    J Neurosci Res; 2002 Feb; 67(4):533-43. PubMed ID: 11835320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of light/dark, seasonal and lunar cycles on serum melatonin levels and synaptic bodies number of the pineal gland of the rat.
    Martínez-Soriano F; Ruiz-Torner A; Armañanzas E; Valverde-Navarro AA
    Histol Histopathol; 2002 Jan; 17(1):213-22. PubMed ID: 11813873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats.
    Hata K; Yamaguchi H; Tsurita G; Watanabe S; Wake K; Taki M; Ueno S; Nagawa H
    Bioelectromagnetics; 2005 Jan; 26(1):49-53. PubMed ID: 15605405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correlation of the number of pineal "synaptic" ribbons and spherules with the level of serum melatonin over a 24-hour period in male rabbits.
    Martinez Soriano F; Welker HA; Vollrath L
    Cell Tissue Res; 1984; 236(3):555-60. PubMed ID: 6467335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Horizontal or vertical 50-Hz, 1-microT magnetic fields have no effect on pineal gland or plasma melatonin concentration of albino rats.
    Kato M; Honma K; Shigemitsu T; Shiga Y
    Neurosci Lett; 1994 Feb; 168(1-2):205-8. PubMed ID: 8028776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits.
    Halgamuge MN
    Radiat Prot Dosimetry; 2013 May; 154(4):405-16. PubMed ID: 23051584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Depressive effect of LHRH on the numbers of "synaptic" ribbons and spherules in the pineal gland of diestrous rats.
    Kosaras B; Welker HA; Mess B; Vollrath L
    Cell Tissue Res; 1983; 229(2):461-6. PubMed ID: 6342792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of pulsing magnetic fields on pineal melatonin synthesis in a teleost fish (brook trout, Salvelinus fontinalis).
    Lerchl A; Zachmann A; Ali MA; Reiter RJ
    Neurosci Lett; 1998 Nov; 256(3):171-3. PubMed ID: 9855367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the rat pinealocyte ultrastructure with melatonin concentrations during daytime and at night.
    Karasek M; Stankov B; Lucini V; Scaglione F; Esposti G; Mariani M; Fraschini F
    J Pineal Res; 1990; 9(4):251-7. PubMed ID: 2096194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of melatonin and serotonin on the number of rat pineal "synaptic" ribbons and spherules in vitro.
    Vollrath L; Karasek M; Kosaras B; Kunert-Radek J; Lewinski A
    Cell Tissue Res; 1985; 242(3):607-11. PubMed ID: 4075379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recovery of nocturnal melatonin concentration takes place within one week following cessation of 50 Hz circularly polarized magnetic field exposure for six weeks.
    Kato M; Honma K; Shigemitsu T; Shiga Y
    Bioelectromagnetics; 1994; 15(5):489-92. PubMed ID: 7802715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electromagnetic fields and melatonin production.
    Reiter RJ
    Biomed Pharmacother; 1993; 47(10):439-44. PubMed ID: 8061243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A circannual cycle in pinealocyte synaptic ribbons in the hibernating and seasonally reproductive 13-lined ground squirrel (Spermophilus tridecemlineatus).
    McNulty JA; Fox LM; Spurrier WA
    Neurosci Lett; 1990 Nov; 119(2):237-40. PubMed ID: 2280901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of a short light pulse at night on the ultrastructure of the rat pinealocyte: a quantitative study.
    Karasek M; Marek K; Pévet P
    Cell Tissue Res; 1988 Oct; 254(1):247-9. PubMed ID: 3197081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transplantation of the pineal gland in the mammalian third cerebral ventricle.
    Wu WT; Scott DE; Miller E
    Exp Neurol; 1990 Apr; 108(1):23-32. PubMed ID: 1969356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic exposure to 2.9 mT, 40 Hz magnetic field reduces melatonin concentrations in humans.
    Karasek M; Woldanska-Okonska M; Czernicki J; Zylinska K; Swietoslawski J
    J Pineal Res; 1998 Dec; 25(4):240-4. PubMed ID: 9885993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 'Synaptic ribbon' modifications in the pineal gland of the albino rat following 24 hours of immobilization.
    Martinenz Soriano F; Hernandez Gil de Tejada T; Sanchez Herrador P; Ruiz Torner A
    Acta Anat (Basel); 1992; 145(4):430-3. PubMed ID: 10457789
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ["Synaptic ribbons" in the pineal body of the rat. (Preliminary report)].
    Krstić R
    Verh Anat Ges; 1975; 69():443-6. PubMed ID: 1229309
    [No Abstract]   [Full Text] [Related]  

  • 39. Neuroendocrine mediated effects of electromagnetic-field exposure: possible role of the pineal gland.
    Wilson BW; Stevens RG; Anderson LE
    Life Sci; 1989; 45(15):1319-32. PubMed ID: 2677573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates.
    Rogers WR; Reiter RJ; Barlow-Walden L; Smith HD; Orr JL
    Bioelectromagnetics; 1995; Suppl 3():111-8. PubMed ID: 8787561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.