These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 1324008)
1. Comparative study of the effects of amphotericin B on the glucose metabolism in Saccharomyces cerevisiae in K(+)- and Na(+)-rich media. Wietzerbin J; Herve M; Lebourguais O; Tran-Dinh S Biochim Biophys Acta; 1992 Aug; 1136(2):105-12. PubMed ID: 1324008 [TBL] [Abstract][Full Text] [Related]
2. Effects of amphotericin B on the glucose metabolism in Saccharomyces cerevisiae cells. Studies by 13C-, 1H-NMR and biochemical methods. Tran-Dinh S; Hervé M; Lebourguais O; Jerome M; Wietzerbin J Eur J Biochem; 1991 Apr; 197(1):271-9. PubMed ID: 2015823 [TBL] [Abstract][Full Text] [Related]
3. Effects of amphotericin B on glucose metabolism in Candida albicans blastospores evidenced by 13C NMR. Rabaste F; Sancelme M; Delort AM Can J Microbiol; 1996 Jul; 42(7):705-710. PubMed ID: 8764684 [TBL] [Abstract][Full Text] [Related]
4. Effects of 2-deoxy-D-glucose on the glucose metabolism in Saccharomyces cerevisiae studied by multinuclear-NMR spectroscopy and biochemical methods. Hervé M; Wietzerbin J; Lebourguais O; Tran-Dinh S Biochimie; 1992 Dec; 74(12):1103-15. PubMed ID: 1363373 [TBL] [Abstract][Full Text] [Related]
5. Determination of flux through different metabolite pathways in Saccharomyces cerevisiae by 1H-NMR and 13C-NMR spectroscopy. Tran-Dinh S; Herve M; Wietzerbin J Eur J Biochem; 1991 Nov; 201(3):715-21. PubMed ID: 1682149 [TBL] [Abstract][Full Text] [Related]
6. Detection of modifications in the glucose metabolism induced by genetic mutations in Saccharomyces cerevisiae by 13C- and H-NMR spectroscopy. Herve M; Buffin-Meyer B; Bouet F; Son TD Eur J Biochem; 2000 Jun; 267(11):3337-44. PubMed ID: 10824121 [TBL] [Abstract][Full Text] [Related]
7. Non-cooperative effects of glucose and 2-deoxyglucose on their metabolism in Saccharomyces cerevisiae studied by 1H-NMR and 13C-NMR spectroscopy. Herve M; Wietzerbin J; Tran-Dinh S Eur J Biochem; 1993 Nov; 218(1):221-8. PubMed ID: 8243467 [TBL] [Abstract][Full Text] [Related]
8. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. Ramos H; Valdivieso E; Gamargo M; Dagger F; Cohen BE J Membr Biol; 1996 Jul; 152(1):65-75. PubMed ID: 8660406 [TBL] [Abstract][Full Text] [Related]
9. Recovery of hepatocytes from attack by the pore former amphotericin B. Binet A; Bolard J Biochem J; 1988 Jul; 253(2):435-40. PubMed ID: 3178722 [TBL] [Abstract][Full Text] [Related]
10. Dependence of vacuole disruption and independence of potassium ion efflux in fungicidal activity induced by combination of amphotericin B and allicin against Saccharomyces cerevisiae. Ogita A; Yutani M; Fujita K; Tanaka T J Antibiot (Tokyo); 2010 Dec; 63(12):689-92. PubMed ID: 20940723 [TBL] [Abstract][Full Text] [Related]
11. Influence of extracellular K+ or Mg2+ on the stages of the antifungal effects of amphotericin B and filipin. Brajtburg J; Medoff G; Kobayashi GS; Elberg S Antimicrob Agents Chemother; 1980 Oct; 18(4):593-7. PubMed ID: 7004343 [TBL] [Abstract][Full Text] [Related]
12. Na+, K+ and Cl- selectivity of the permeability pathways induced through sterol-containing membrane vesicles by amphotericin B and other polyene antibiotics. Hartsel SC; Benz SK; Ayenew W; Bolard J Eur Biophys J; 1994; 23(2):125-32. PubMed ID: 8050397 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. González-Hernández JC; Jiménez-Estrada M; Peña A Extremophiles; 2005 Feb; 9(1):7-16. PubMed ID: 15338455 [TBL] [Abstract][Full Text] [Related]
14. A sequential mechanism for the formation of aqueous channels by amphotericin B in liposomes. The effect of sterols and phospholipid composition. Cohen BE Biochim Biophys Acta; 1992 Jul; 1108(1):49-58. PubMed ID: 1643081 [TBL] [Abstract][Full Text] [Related]
15. The osmotic responses of Saccharomyces cerevisiae in K(+)-depleted medium. Meikle AJ; Reed RH; Gadd GM FEMS Microbiol Lett; 1991 Feb; 62(1):89-93. PubMed ID: 2032627 [TBL] [Abstract][Full Text] [Related]
16. Regulation of intracellular level of Na+, K+ and glycerol in Saccharomyces cerevisiae under osmotic stress. Sunder S; Singh AJ; Gill S; Singh B Mol Cell Biochem; 1996 May; 158(2):121-4. PubMed ID: 8817473 [TBL] [Abstract][Full Text] [Related]
17. Metabolic changes induced during adaptation of Saccharomyces cerevisiae to a water stress. Singh KK; Norton RS Arch Microbiol; 1991; 156(1):38-42. PubMed ID: 1772344 [TBL] [Abstract][Full Text] [Related]
18. Influence of K+ and Na+ ions on the aggregation processes of antibiotic amphotericin B: electronic absorption and FTIR spectroscopic studies. Gagoś M; Arczewska M J Phys Chem B; 2011 Mar; 115(12):3185-92. PubMed ID: 21375349 [TBL] [Abstract][Full Text] [Related]
19. A 13C comparative nuclear magnetic resonance study of organic solute production and excretion by the yeasts Hansenula anomala and Saccharomyces cerevisiae in saline media. Bellinger Y; Larher F Can J Microbiol; 1988 May; 34(5):605-12. PubMed ID: 3061619 [TBL] [Abstract][Full Text] [Related]
20. Amphotericin B does not increase peritoneal fluid removal. Wang T; Heimbürger O; Cheng HH; Bergström J; Lindholm B Adv Perit Dial; 1998; 14():3-10. PubMed ID: 10649681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]