BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 132432)

  • 1. Temperature-dependent transitions of the myosin-product intermediate at 10 degrees during Mn(II)-ATP hydrolysis by myosin from rabbit psoas muscle.
    Tawada K; Yoshida A
    J Biochem; 1975 Aug; 78(2):293-5. PubMed ID: 132432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-dependent transitions of the myosin-product intermediate at 10 degrees C in the Mn(II)-ATP hydrolysis.
    Hozumi T; Tawada K
    Biochim Biophys Acta; 1975 Jan; 376(1):1-12. PubMed ID: 123763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of myosin subfragment 1 into two fractions, one having the burst site and the other having the non-burst site.
    Taniguchi S; Tawada K
    J Biochem; 1976 Oct; 80(4):853-60. PubMed ID: 137898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-dependence of tension development by glycerinated muscle fibers of rabbit psoas in Mn (II)-ATP and Mg-ATP solutions.
    Yoshida A; Tawada K
    J Biochem; 1976 Oct; 80(4):861-5. PubMed ID: 827548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium ion dependent adenosine triphosphatase activity of heavy meromyosin as a function of temperature between +20 and -15 degrees C.
    Béchet JJ; Bréda C; Guinand S; Hill M; d'Albis A
    Biochemistry; 1979 Sep; 18(19):4080-9. PubMed ID: 158379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of the skeletal muscle myosin ATPase. I. Identity of the myosin active sites.
    Chock SP; Eisenberg E
    J Biol Chem; 1979 May; 254(9):3229-35. PubMed ID: 155064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient phase of adenosine triphosphate hydrolysis by myosin, heavy meromyosin, and subfragment 1.
    Taylor EW
    Biochemistry; 1977 Feb; 16(4):732-9. PubMed ID: 138438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependence of tension development by glycerinated muscle fibers of rabbit psoas in Mg-ITP solution.
    Yoshida A; Hozumi T; Tawada K
    J Biochem; 1977 Aug; 82(2):495-8. PubMed ID: 334757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis.
    Dergez T; Lorinczy D; Könczöl F; Farkas N; Belagyi J
    BMC Struct Biol; 2007 Jun; 7():41. PubMed ID: 17588264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
    Ferenczi MA; Homsher E; Simmons RM; Trentham DR
    Biochem J; 1978 Apr; 171(1):165-75. PubMed ID: 148277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent change in rate-limiting step of the magnesium-stimulated ITPase of myosin.
    Hozumi T
    Eur J Biochem; 1976 Mar; 63(1):241-7. PubMed ID: 4315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of subfragment-1 of H-meromyosin into two equimolar fractions with and without formation of the reactive enzyme-phosphate-ADP complex.
    Inoue A; Tonomura Y
    J Biochem; 1976 Feb; 79(2):419-34. PubMed ID: 131797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of substrate concentration on the Mg-adenosine triphosphatase activity of myosin.
    Nihei T; Filipenko CA
    Can J Biochem; 1975 Dec; 53(12):1282-7. PubMed ID: 130198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature induced analog reaction of adenylyl imidodiphosphate to an intermediate step of heavy meromyosin adenosine triphosphatase.
    Morita F
    J Biochem; 1977 Feb; 81(2):313-20. PubMed ID: 139405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-induced transitions in the conformation of intermediates in the hydrolytic cycle of myosin.
    Watterson JG; Schaub MC; Locher R; Di Pierri S; Kutzer M
    Eur J Biochem; 1975 Aug; 56(1):79-90. PubMed ID: 240711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis.
    Barnett VA; Thomas DD
    Biochemistry; 1987 Jan; 26(1):314-23. PubMed ID: 3030402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of ionic conditions, temperature, and chemical modification on the fluorescence of myosin during the steady state of ATP hydrolysis. A comparison of the fluorescnece and electron spin resonance spectra of the spin-labeled enzyme.
    Seidel JC
    J Biol Chem; 1975 Jul; 250(14):5681-7. PubMed ID: 237927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tryptophanyl residues in heavy meromyosin as studied by chemical modification with 2-hydroxy-5-nitrobenzyl bromide.
    Yoshino H
    J Biochem; 1976 Nov; 80(5):1117-28. PubMed ID: 187581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction.
    Bagshaw CR; Trentham DR
    Biochem J; 1974 Aug; 141(2):331-49. PubMed ID: 4281653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Desensitization of substrate inhibition of acto-H-meromyosin ATPase by treatment of H-meromyosin with rho-chloromercuribenzoate. Relation between the extent of desensitization and the amount of bound rho-chloromercuribenzoate1.
    Shibata-sekiya K; Tonomura Y
    J Biochem; 1975 Mar; 77(3):543-57. PubMed ID: 125273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.