These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1324437)

  • 1. Aging-induced decrease in dopaminergic-stimulated phosphoinositide metabolism in rat brain.
    Undie AS; Friedman E
    Neurobiol Aging; 1992; 13(4):505-11. PubMed ID: 1324437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic haloperidol treatment on dopamine-induced inositol phosphate formation in rat brain slices.
    Li R; Chuang DM; Wyatt RJ; Kirch DG
    Neurochem Res; 1994 Jun; 19(6):673-8. PubMed ID: 8065524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diet restriction prevents aging-induced deficits in brain phosphoinositide metabolism.
    Undie AS; Friedman E
    J Gerontol; 1993 Mar; 48(2):B62-7. PubMed ID: 8386200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain.
    Undie AS; Friedman E
    J Pharmacol Exp Ther; 1990 Jun; 253(3):987-92. PubMed ID: 1972756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective dopaminergic mechanism of dopamine and SKF38393 stimulation of inositol phosphate formation in rat brain.
    Undie AS; Friedman E
    Eur J Pharmacol; 1992 Aug; 226(4):297-302. PubMed ID: 1327844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of dopamine agonist-induced phosphoinositide hydrolysis by concomitant stimulation of cyclic AMP formation in brain slices.
    Undie AS; Friedman E
    J Neurochem; 1994 Jul; 63(1):222-30. PubMed ID: 7911510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased phospholipase C-beta immunoreactivity, phosphoinositide metabolism, and protein kinase C activation in senescent F-344 rat brain.
    Undie AS; Wang HY; Friedman E
    Neurobiol Aging; 1995; 16(1):19-28. PubMed ID: 7723932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of aging on myo-inositol and phosphoinositide metabolism in the cochlear and vestibular sensory epithelia of the rat.
    Ogawa K; McLaren J; Schacht J
    Hear Res; 1994 Mar; 73(2):155-62. PubMed ID: 8188544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between dopamine agonist stimulation of inositol phosphate formation and cytidine diphosphate-diacylglycerol accumulation in brain slices.
    Undie AS
    Brain Res; 1999 Jan; 816(2):286-94. PubMed ID: 9878788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the phosphoinositide-linked dopamine receptor in a mouse hippocampal-neuroblastoma hybrid cell line.
    Jin LQ; Cai G; Wang HY; Smith C; Friedman E
    J Neurochem; 1998 Nov; 71(5):1935-43. PubMed ID: 9798918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation.
    Wang HY; Undie AS; Friedman E
    Mol Pharmacol; 1995 Dec; 48(6):988-94. PubMed ID: 8848015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain.
    Undie AS; Weinstock J; Sarau HM; Friedman E
    J Neurochem; 1994 May; 62(5):2045-8. PubMed ID: 7908949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of dopamine D1 and D2 receptor agonists on inositol phosphate turnover in rat striatal slices.
    Gupta SK; Mishra RK
    Biochem Int; 1990 Dec; 22(5):887-94. PubMed ID: 1983069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased carbachol-stimulated inositol 1,3,4,5-tetrakisphosphate formation in senescent rat cerebral cortical slices.
    Kurian P; Narang N; Crews FT
    Neurobiol Aging; 1992; 13(4):521-6. PubMed ID: 1508302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effects of lithium on the phosphoinositide cycle in rat cerebral cortex, hippocampus, and striatum.
    Jenkinson S; Patel N; Nahorski SR; Challiss RA
    J Neurochem; 1993 Sep; 61(3):1082-90. PubMed ID: 8395558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SKF83959 exhibits biochemical agonism by stimulating [(35)S]GTP gamma S binding and phosphoinositide hydrolysis in rat and monkey brain.
    Panchalingam S; Undie AS
    Neuropharmacology; 2001 May; 40(6):826-37. PubMed ID: 11369036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further evidence against the coupling of dopamine receptors to phosphoinositide hydrolysis in rat striatum.
    Rubinstein JE; Hitzemann RJ
    Biochem Pharmacol; 1990 Jun; 39(12):1965-70. PubMed ID: 1972328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine receptor stimulation does not affect phosphoinositide hydrolysis in slices of rat striatum.
    Kelly E; Batty I; Nahorski SR
    J Neurochem; 1988 Sep; 51(3):918-24. PubMed ID: 2842457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related changes in receptor-mediated phosphoinositide hydrolysis in various regions of rat brain.
    Mundy W; Tandon P; Ali S; Tilson H
    Life Sci; 1991; 49(14):PL97-102. PubMed ID: 1653884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visualization of agonist-stimulated inositol phospholipid turnover in individual neurons of the rat cerebral cortex and hippocampus.
    Bevilacqua JA; Downes CP; Lowenstein PR
    Neuroscience; 1994 Jun; 60(4):945-58. PubMed ID: 7936213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.