BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 1324607)

  • 21. Differential regulation of xanthine and NAD(P)H oxidase by hypoxia in human umbilical vein endothelial cells. Role of nitric oxide and adenosine.
    Sohn HY; Krotz F; Gloe T; Keller M; Theisen K; Klauss V; Pohl U
    Cardiovasc Res; 2003 Jun; 58(3):638-46. PubMed ID: 12798437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free radicals and myocardial ischemia. The role of xanthine oxidase.
    McCord JM; Roy RS; Schaffer SW
    Adv Myocardiol; 1985; 5():183-9. PubMed ID: 2982206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues.
    Zweier JL; Kuppusamy P; Lutty GA
    Proc Natl Acad Sci U S A; 1988 Jun; 85(11):4046-50. PubMed ID: 2836868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of hippocampal reoxygenation injury. Treatment with antioxidants.
    Horáková L; Stolc S; Chromíková Z; Pekárová A; Derková L
    Neuropharmacology; 1997 Feb; 36(2):177-84. PubMed ID: 9144655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. O2-. release by activated Kupffer cells upon hypoxia-reoxygenation.
    Rymsa B; Wang JF; de Groot H
    Am J Physiol; 1991 Oct; 261(4 Pt 1):G602-7. PubMed ID: 1656773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondria and xanthine oxidase both generate reactive oxygen species in isolated perfused rat liver after hypoxic injury.
    Jaeschke H; Mitchell JR
    Biochem Biophys Res Commun; 1989 Apr; 160(1):140-7. PubMed ID: 2540741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical changes in the intestine associated with anoxia and reoxygenation: in vivo and in vitro studies.
    Canada AT; Werkman RF; Mansbach CM; Rosen GM
    J Free Radic Biol Med; 1986; 2(5-6):327-34. PubMed ID: 3036928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Podocyte architecture in puromycin aminonucleoside-treated rats administered tungsten or allopurinol.
    Ricardo SD; Bertram JF; Ryan GB
    Exp Nephrol; 1995; 3(5):270-9. PubMed ID: 7583048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of xanthine oxidase in ischemia/reperfusion injury.
    Linas SL; Whittenburg D; Repine JE
    Am J Physiol; 1990 Mar; 258(3 Pt 2):F711-6. PubMed ID: 2316673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of purines and xanthine oxidase in reperfusion injury in perfused rat liver.
    Zhong Z; Lemasters JJ; Thurman RG
    J Pharmacol Exp Ther; 1989 Aug; 250(2):470-5. PubMed ID: 2547932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Xanthine oxidase and superoxide radicals in portal triad crossclamping-induced microvascular reperfusion injury of the liver.
    Müller MJ; Vollmar B; Friedl HP; Menger MD
    Free Radic Biol Med; 1996; 21(2):189-97. PubMed ID: 8818634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of hypoxia, reoxygenation, ischemia, and reperfusion on hydraulic permeability in rat mesenteric venules.
    Victorino GP; Chong TJ; Cripps MW; Ereso AQ; Cureton E; Curran B; Sadjadi J
    Shock; 2009 Mar; 31(3):317-21. PubMed ID: 18636039
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Measurement of free radical generation from endothelial cells and observation of cell injury exposed to anoxia-reoxygenation].
    Nishida K
    Nihon Geka Gakkai Zasshi; 1992 Apr; 93(4):369-76. PubMed ID: 1318495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radical production and changes in superoxide dismutases associated with hypoxia/reoxygenation-induced apoptosis of embryonic rat forebrain neurons in culture.
    Lièvre V; Becuwe P; Bianchi A; Koziel V; Franck P; Schroeder H; Nabet P; Dauça M; Daval JL
    Free Radic Biol Med; 2000 Dec; 29(12):1291-301. PubMed ID: 11118819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells.
    Hu Q; Ziegelstein RC
    Circulation; 2000 Nov; 102(20):2541-7. PubMed ID: 11076830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of xanthine oxidase in postischemic microvascular injury in skeletal muscle.
    Smith JK; Carden DL; Korthuis RJ
    Am J Physiol; 1989 Dec; 257(6 Pt 2):H1782-9. PubMed ID: 2557770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct detection of endogenous hydroxyl radical production in cultured adult cardiomyocytes during anoxia and reoxygenation. Is the hydroxyl radical really the most damaging radical species?
    Khalid MA; Ashraf M
    Circ Res; 1993 Apr; 72(4):725-36. PubMed ID: 8383013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Normothermic liver ischemia in rats: xanthine oxidase is not the main source of oxygen free radicals.
    Karwinski W; Bolann B; Ulvik R; Farstad M; Søreide O
    Res Exp Med (Berl); 1993; 193(5):275-83. PubMed ID: 8278674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypoxia/reoxygenation increases the permeability of endothelial cell monolayers: role of oxygen radicals.
    Inauen W; Payne DK; Kvietys PR; Granger DN
    Free Radic Biol Med; 1990; 9(3):219-23. PubMed ID: 2272529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of oxygen radicals on substrate oxidation by cardiac myocytes.
    McDonough KH; Henry JJ; Spitzer JJ
    Biochim Biophys Acta; 1987 Nov; 926(2):127-31. PubMed ID: 2822138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.