These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 1324851)
21. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria. Brondino CD; Passeggi MC; Caldeira J; Almendra MJ; Feio MJ; Moura JJ; Moura I J Biol Inorg Chem; 2004 Mar; 9(2):145-51. PubMed ID: 14669076 [TBL] [Abstract][Full Text] [Related]
22. Aldehyde oxidoreductases and other molybdenum-containing enzymes. Moura JJ; Barata BA Methods Enzymol; 1994; 243():24-42. PubMed ID: 7830614 [No Abstract] [Full Text] [Related]
24. Formate dehydrogenase molybdenum and tungsten sites--observation by EXAFS of structural differences. Cramer SP; Liu CL; Mortenson LE; Spence JT; Liu SM; Yamamoto I; Ljungdahl LG J Inorg Biochem; 1985 Feb; 23(2):119-24. PubMed ID: 3973583 [TBL] [Abstract][Full Text] [Related]
25. Molecular basis of the biological function of molybdenum. Molybdenum-free sulfite oxidase from livers of tungsten-treated rats. Johnson JL; Cohen HJ; Rajagopalan KV J Biol Chem; 1974 Aug; 249(16):5046-55. PubMed ID: 4368926 [No Abstract] [Full Text] [Related]
26. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. Andreesen JR; Ljungdahl LG J Bacteriol; 1973 Nov; 116(2):867-73. PubMed ID: 4147651 [TBL] [Abstract][Full Text] [Related]
27. Molecular basis of the biological function of molybdenum. Effect of tungsten on xanthine oxidase and sulfite oxidase in the rat. Johnson JL; Rajagopalan KV; Cohen HJ J Biol Chem; 1974 Feb; 249(3):859-66. PubMed ID: 4359773 [No Abstract] [Full Text] [Related]
28. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Siemann S; Schneider K; Oley M; Müller A Biochemistry; 2003 Apr; 42(13):3846-57. PubMed ID: 12667075 [TBL] [Abstract][Full Text] [Related]
29. Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site. Stewart LJ; Bailey S; Bennett B; Charnock JM; Garner CD; McAlpine AS J Mol Biol; 2000 Jun; 299(3):593-600. PubMed ID: 10835270 [TBL] [Abstract][Full Text] [Related]
30. Molecular basis of the biological function of molybdenum. Molybdenum-free xanthine oxidase from livers of tungsten-treated rats. Johnson JL; Waud WR; Cohen HJ; Rajagopalan KV J Biol Chem; 1974 Aug; 249(16):5056-61. PubMed ID: 4368927 [No Abstract] [Full Text] [Related]
31. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor. Saracino L; Violet M; Boxer DH; Giordano G Eur J Biochem; 1986 Aug; 158(3):483-90. PubMed ID: 3525161 [TBL] [Abstract][Full Text] [Related]
32. The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Karrasch M; Börner G; Enssle M; Thauer RK Eur J Biochem; 1990 Dec; 194(2):367-72. PubMed ID: 2125267 [TBL] [Abstract][Full Text] [Related]
33. Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum. White H; Feicht R; Huber C; Lottspeich F; Simon H Biol Chem Hoppe Seyler; 1991 Nov; 372(11):999-1005. PubMed ID: 1793519 [TBL] [Abstract][Full Text] [Related]
34. Purification and characterization of the tungsten enzyme aldehyde:ferredoxin oxidoreductase from the hyperthermophilic denitrifier Pyrobaculum aerophilum. Hagedoorn PL; Chen T; Schröder I; Piersma SR; de Vries S; Hagen WR J Biol Inorg Chem; 2005 May; 10(3):259-69. PubMed ID: 15772818 [TBL] [Abstract][Full Text] [Related]
35. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. Jones JB; Stadtman TC J Biol Chem; 1981 Jan; 256(2):656-63. PubMed ID: 7451465 [TBL] [Abstract][Full Text] [Related]
36. Evidence for the presence of a new NAD+-dependent formate dehydrogenase in Pseudomonas sp. 101 cells grown on a molybdenum-containing medium. Karzanov VV; Bogatsky YuA ; Tishkov VI; Egorov AM FEMS Microbiol Lett; 1989 Jul; 51(1):197-200. PubMed ID: 2777065 [TBL] [Abstract][Full Text] [Related]
37. Effects of molybdenum and tungsten on induction of nitrate reductase and formate dehydrogenase in wild type and mutant Paracoccus denitrificans. Burke KA; Calder K; Lascelles J Arch Microbiol; 1980 Jun; 126(2):155-9. PubMed ID: 7192082 [TBL] [Abstract][Full Text] [Related]
38. Formate dehydrogenase from Methanobacterium formicicum. Electron paramagnetic resonance spectroscopy of the molybdenum and iron-sulfur centers. Barber MJ; Siegel LM; Schauer NL; May HD; Ferry JG J Biol Chem; 1983 Sep; 258(18):10839-45. PubMed ID: 6309816 [TBL] [Abstract][Full Text] [Related]
39. Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Leonhardt U; Andreesen JR Arch Microbiol; 1977 Dec; 115(3):277-84. PubMed ID: 23733 [TBL] [Abstract][Full Text] [Related]
40. The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme--an aldehyde oxidoreductase. Kardinahl S; Schmidt CL; Hansen T; Anemüller S; Petersen A; Schäfer G Eur J Biochem; 1999 Mar; 260(2):540-8. PubMed ID: 10095793 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]