BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1324973)

  • 1. Is the mammalian cell plasma membrane a barrier to oxygen transport?
    Subczynski WK; Hopwood LE; Hyde JS
    J Gen Physiol; 1992 Jul; 100(1):69-87. PubMed ID: 1324973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling study.
    Ligeza A; Tikhonov AN; Hyde JS; Subczynski WK
    Biochim Biophys Acta; 1998 Jul; 1365(3):453-63. PubMed ID: 9711298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen permeability of phosphatidylcholine--cholesterol membranes.
    Subczynski WK; Hyde JS; Kusumi A
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4474-8. PubMed ID: 2543978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study.
    Subczynski WK; Hyde JS; Kusumi A
    Biochemistry; 1991 Sep; 30(35):8578-90. PubMed ID: 1653601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen permeability of the lipid bilayer membrane made of calf lens lipids.
    Widomska J; Raguz M; Subczynski WK
    Biochim Biophys Acta; 2007 Oct; 1768(10):2635-45. PubMed ID: 17662231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microimmiscibility and three-dimensional dynamic structures of phosphatidylcholine-cholesterol membranes: translational diffusion of a copper complex in the membrane.
    Subczynski WK; Antholine WE; Hyde JS; Kusumi A
    Biochemistry; 1990 Aug; 29(34):7936-45. PubMed ID: 2261449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saturation-recovery electron paramagnetic resonance discrimination by oxygen transport (DOT) method for characterizing membrane domains.
    Subczynski WK; Widomska J; Wisniewska A; Kusumi A
    Methods Mol Biol; 2007; 398():143-57. PubMed ID: 18214379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique.
    Ashikawa I; Yin JJ; Subczynski WK; Kouyama T; Hyde JS; Kusumi A
    Biochemistry; 1994 Apr; 33(16):4947-52. PubMed ID: 8161556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen diffusion-concentration product in rhodopsin as observed by a pulse ESR spin labeling method.
    Subczynski WK; Renk GE; Crouch RK; Hyde JS; Kusumi A
    Biophys J; 1992 Aug; 63(2):573-7. PubMed ID: 1330032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-label saturation-recovery EPR at W-band: applications to eye lens lipid membranes.
    Mainali L; Raguz M; Camenisch TG; Hyde JS; Subczynski WK
    J Magn Reson; 2011 Sep; 212(1):86-94. PubMed ID: 21745756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical properties of the lipid bilayer membrane made of cortical and nuclear bovine lens lipids: EPR spin-labeling studies.
    Raguz M; Widomska J; Dillon J; Gaillard ER; Subczynski WK
    Biochim Biophys Acta; 2009 Nov; 1788(11):2380-8. PubMed ID: 19761756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels.
    Kusumi A; Subczynski WK; Hyde JS
    Proc Natl Acad Sci U S A; 1982 Mar; 79(6):1854-8. PubMed ID: 6952236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permeability of nitric oxide through lipid bilayer membranes.
    Subczynski WK; Lomnicka M; Hyde JS
    Free Radic Res; 1996 May; 24(5):343-9. PubMed ID: 8733938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of 5-doxylstearic acid in the membranes of mammalian cells.
    Nettleton DO; Morse PD; Dobrucki JW; Swartz HM; Dodd NJ
    Biochim Biophys Acta; 1988 Oct; 944(2):315-20. PubMed ID: 2846059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-label oximetry at Q- and W-band.
    Subczynski WK; Mainali L; Camenisch TG; Froncisz W; Hyde JS
    J Magn Reson; 2011 Apr; 209(2):142-8. PubMed ID: 21277814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane alpha-helical peptides with alternating leucine and alanine residues.
    Subczynski WK; Pasenkiewicz-Gierula M; McElhaney RN; Hyde JS; Kusumi A
    Biochemistry; 2003 Apr; 42(13):3939-48. PubMed ID: 12667085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeability of small nonelectrolytes through lipid bilayer membranes.
    Walter A; Gutknecht J
    J Membr Biol; 1986; 90(3):207-17. PubMed ID: 3735402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic simulations modify interpretation of spin-label oximetry data. Part 1: intensified water-lipid interfacial resistances.
    Angles G; Hail A; Dotson RJ; Pias SC
    Appl Magn Reson; 2021 Oct; 52(10):1261-1289. PubMed ID: 37292189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of lipid domains in reconstituted porcine lens membranes using EPR spin-labeling approaches.
    Raguz M; Widomska J; Dillon J; Gaillard ER; Subczynski WK
    Biochim Biophys Acta; 2008 Apr; 1778(4):1079-90. PubMed ID: 18298944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the cholesterol bilayer domain a barrier to oxygen transport into the eye lens?
    Plesnar E; Szczelina R; Subczynski WK; Pasenkiewicz-Gierula M
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):434-441. PubMed ID: 29079282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.