These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 13250451)

  • 41. [Plasmids for naphthalene biodegradation incompatible with IncP-2 and IncP-7 group plasmids].
    Kochetkov VV; Boronin AM
    Genetika; 1985 Apr; 21(4):522-9. PubMed ID: 3924728
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Silent genes of the catechol oxidation meta-pathway in naphthalene biodegradation plasmids].
    Boronin AM; Kulakova AN; Tsoĭ TV; Kosheleva IA; Kochetkov VV
    Dokl Akad Nauk SSSR; 1988; 299(1):237-40. PubMed ID: 3378500
    [No Abstract]   [Full Text] [Related]  

  • 43. [Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas].
    Levchuk AA; Vasilenko SL; Bulyga IM; Titok MA; Thomas KM
    Izv Akad Nauk Ser Biol; 2005; (2):162-7. PubMed ID: 16004276
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Effect of naphthalene biodegradation plasmids on physiological characteristics of rhizospheric bacteria of the genus Pseudomonas].
    Volkova OV; Anokhina TO; Puntus IF; Kochetkov VV; Filonov AE; Boronin AM
    Prikl Biokhim Mikrobiol; 2005; 41(5):525-9. PubMed ID: 16240650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetics of naphthalene catabolism in pseudomonads.
    Yen KM; Serdar CM
    Crit Rev Microbiol; 1988; 15(3):247-68. PubMed ID: 3288442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The naphthalene catabolic protein NahG plays a key role in hexavalent chromium reduction in Pseudomonas brassicacearum LZ-4.
    Huang H; Tao X; Jiang Y; Khan A; Wu Q; Yu X; Wu D; Chen Y; Ling Z; Liu P; Li X
    Sci Rep; 2017 Aug; 7(1):9670. PubMed ID: 28852154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions.
    Burlage RS; Sayler GS; Larimer F
    J Bacteriol; 1990 Sep; 172(9):4749-57. PubMed ID: 2203729
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Rhizosphere strain of Pseudomonas chlororaphis capable of degrading naphthalene in the presence of cobalt/nickel].
    Siunova TV; Anokhina TO; Mashukova AV; Kochetkov VV; Borodin AM
    Mikrobiologiia; 2007; 76(2):212-8. PubMed ID: 17583218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Overexpression, purification and characterization of a new salicylate hydroxylase from naphthalene-degrading Pseudomonas sp. strain ND6.
    Zhao H; Chen D; Li Y; Cai B
    Microbiol Res; 2005; 160(3):307-13. PubMed ID: 16035243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10.
    Bosch R; García-Valdés E; Moore ER
    Gene; 1999 Aug; 236(1):149-57. PubMed ID: 10433976
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10.
    Bosch R; García-Valdés E; Moore ER
    Gene; 2000 Mar; 245(1):65-74. PubMed ID: 10713446
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosynthesis of indigo dye by newly isolated naphthalene-degrading strain Pseudomonas sp. HOB1 and its application in dyeing cotton fabric.
    Pathak H; Madamwar D
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1616-26. PubMed ID: 19440664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lichen-Associated Bacterium, a Novel Bioresource of Polyhydroxyalkanoate (PHA) Production and Simultaneous Degradation of Naphthalene and Anthracene.
    Nahar S; Jeong MH; Hur JS
    J Microbiol Biotechnol; 2019 Jan; 29(1):79-90. PubMed ID: 30518016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.
    Wallenius K; Lappi K; Mikkonen A; Wickström A; Vaalama A; Lehtinen T; Suominen L
    Biodegradation; 2012 Feb; 23(1):47-55. PubMed ID: 21626282
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Plasmid characteristics of naphthalene and salicylate biodegradation in Pseudomonas putida].
    Zakharian RA; Bakunin KA; Gasparian NS; Kocharian ShM; Arakelov GM
    Mikrobiologiia; 1980; 49(6):931-5. PubMed ID: 6259498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolism of dibenzothiophene and naphthalene in Pseudomonas strains: complete DNA sequence of an upper naphthalene catabolic pathway.
    Denome SA; Stanley DC; Olson ES; Young KD
    J Bacteriol; 1993 Nov; 175(21):6890-901. PubMed ID: 8226631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Microbiol Res; 2005; 160(2):149-57. PubMed ID: 15881832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Naphthalene oxidizing bacteria of the western Ukrainian oil deposits].
    Kvasnikov EI; Tin'ianova NZ; Krivits'kii IP
    Mikrobiol Zh; 1970; 32(3):294-7. PubMed ID: 5517373
    [No Abstract]   [Full Text] [Related]  

  • 59. [Comparative study of the plasmids controlling naphthalene biodegradation by a Pseudomonas culture].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1984; 53(4):639-44. PubMed ID: 6434909
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Degradation of 2-methylnaphthalene by Pseudomonas sp. strain NGK1.
    Sharanagouda U; Karegoudar TB
    Curr Microbiol; 2001 Dec; 43(6):440-3. PubMed ID: 11685513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.