These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1325098)

  • 1. Polylactide and polyglycolic acid-reinforced coralline hydroxy-apatite for the reconstruction of cranial bone defects in the rabbit.
    Antikainen T; Ruuskanen M; Taurio R; Kallioinen M; Serlo W; Törmälä P; Waris T
    Acta Neurochir (Wien); 1992; 117(1-2):59-62. PubMed ID: 1325098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced healing of large cranial defects by an osteoinductive protein in rabbits.
    Turk AE; Ishida K; Jensen JA; Wollman JS; Miller TA
    Plast Reconstr Surg; 1993 Sep; 92(4):593-600; discussion 601-2. PubMed ID: 8395062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of cranial bone defects using a quick-setting hydroxyapatite cement and absorbable plates.
    Ascherman JA; Foo R; Nanda D; Parisien M
    J Craniofac Surg; 2008 Jul; 19(4):1131-5. PubMed ID: 18650747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New bone and connective tissue ingrowth in a hydroxyapatite block repairing a rabbit skull defect.
    Lindholm TC; Lindholm TS
    Ann Chir Gynaecol Suppl; 1993; 207():109-15. PubMed ID: 8154824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of cranial defects with porous hydroxylapatite blocks.
    Waite PD; Morawetz RB; Zeiger HE; Pincock JL
    Neurosurgery; 1989 Aug; 25(2):214-7. PubMed ID: 2549443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits.
    Kühne JH; Bartl R; Frisch B; Hammer C; Jansson V; Zimmer M
    Acta Orthop Scand; 1994 Jun; 65(3):246-52. PubMed ID: 8042473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on bone induction in hydroxyapatite combined with bone morphogenetic protein.
    Ono I; Ohura T; Murata M; Yamaguchi H; Ohnuma Y; Kuboki Y
    Plast Reconstr Surg; 1992 Nov; 90(5):870-9. PubMed ID: 1329127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiphase system bone implant for regenerating the calvaria.
    Kleinschmidt JC; Marden LJ; Kent D; Quigley N; Hollinger JO
    Plast Reconstr Surg; 1993 Apr; 91(4):581-8. PubMed ID: 8446710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary study of the osteogenic potential of a biodegradable alloplastic-osteoinductive alloimplant.
    Schmitz JP; Hollinger JO
    Clin Orthop Relat Res; 1988 Dec; (237):245-55. PubMed ID: 2847892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of demineralized bone matrix on bone growth within a porous HA material: a histologic and histometric study.
    Damien CJ; Parsons JR; Prewett AB; Huismans F; Shors EC; Holmes RE
    J Biomater Appl; 1995 Jan; 9(3):275-88. PubMed ID: 9309501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a bioresorbable film on regeneration of cranial bone.
    Levy FE; Hollinger JO; Szachowicz EH
    Plast Reconstr Surg; 1994 Feb; 93(2):307-11; discussion 312. PubMed ID: 8310022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of surgical skull defects with hydroxylapatite ceramic buttons and granules.
    Yamashima T
    Acta Neurochir (Wien); 1988; 90(3-4):157-62. PubMed ID: 2833072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on repair of critical calvarial defects with nano-hydroxyapatite/collagen/polylactic acid material compounded recombinant human bone morphogenetic protein 2 in rabbits].
    Chen P; Liu B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Nov; 21(11):1191-5. PubMed ID: 18069472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous hydroxyapatite as a bone graft substitute in cranial reconstruction: a histometric study.
    Holmes RE; Hagler HK
    Plast Reconstr Surg; 1988 May; 81(5):662-71. PubMed ID: 2834761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The research of degradability of a novel biodegradable coralline hydroxyapatite after implanted into rabbit.
    Ning Y; Wei T; Defu C; Yonggang X; Da H; Dafu C; Lei S; Zhizhong G
    J Biomed Mater Res A; 2009 Mar; 88(3):741-6. PubMed ID: 18357581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calvarial bone repair with porous D,L-polylactide.
    Robinson BP; Hollinger JO; Szachowicz EH; Brekke J
    Otolaryngol Head Neck Surg; 1995 Jun; 112(6):707-13. PubMed ID: 7777356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neomembranes: a concept review with special reference to self-reinforced polyglycolide membranes.
    Ashammakhi NA
    J Biomed Mater Res; 1996; 33(4):297-303. PubMed ID: 8953396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of coralline hydroxyapatite and expanded polytetrafluoroethylene membrane in the immature craniofacial skeleton.
    Reedy BK; Pan F; Kim WS; Gannon FH; Krasinskas A; Bartlett SP
    Plast Reconstr Surg; 1999 Jan; 103(1):20-6. PubMed ID: 9915159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Reconstruction of the orbits with polylactate implants: animal experimental results after 12 months and clinical prospects].
    de Roche R; Adolphs N; Kuhn A; Gogolewski S; Hammer B; Rahn B
    Mund Kiefer Gesichtschir; 2001 Jan; 5(1):49-56. PubMed ID: 11272388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspects of bone healing and bone substitute incorporation. An experimental study in rabbit skull bone defects.
    Isaksson S
    Swed Dent J Suppl; 1992; 84():1-46. PubMed ID: 1334579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.