These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 1325441)
21. Electron-transfer reactions of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Kopp DA; Gassner GT; Blazyk JL; Lippard SJ Biochemistry; 2001 Dec; 40(49):14932-41. PubMed ID: 11732913 [TBL] [Abstract][Full Text] [Related]
22. Hydroxylation of C-H bonds at carboxylate-bridged diiron centres. Lippard SJ Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):861-77; discussion 1035-40. PubMed ID: 15901540 [TBL] [Abstract][Full Text] [Related]
23. Control of substrate access to the active site in methane monooxygenase. Lee SJ; McCormick MS; Lippard SJ; Cho US Nature; 2013 Feb; 494(7437):380-4. PubMed ID: 23395959 [TBL] [Abstract][Full Text] [Related]
24. Preparation and X-ray structures of metal-free, dicobalt and dimanganese forms of soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath). Sazinsky MH; Merkx M; Cadieux E; Tang S; Lippard SJ Biochemistry; 2004 Dec; 43(51):16263-76. PubMed ID: 15610020 [TBL] [Abstract][Full Text] [Related]
25. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes. Lee D; Lippard SJ Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083 [TBL] [Abstract][Full Text] [Related]
26. Role of the C-terminal region of the B component of Methylosinus trichosporium OB3b methane monooxygenase in the regulation of oxygen activation. Zhang J; Lipscomb JD Biochemistry; 2006 Feb; 45(5):1459-69. PubMed ID: 16445288 [TBL] [Abstract][Full Text] [Related]
27. Intermolecular electron-transfer reactions in soluble methane monooxygenase: a role for hysteresis in protein function. Blazyk JL; Gassner GT; Lippard SJ J Am Chem Soc; 2005 Dec; 127(49):17364-76. PubMed ID: 16332086 [TBL] [Abstract][Full Text] [Related]
28. Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Wolfe MD; Altier DJ; Stubna A; Popescu CV; Münck E; Lipscomb JD Biochemistry; 2002 Jul; 41(30):9611-26. PubMed ID: 12135383 [TBL] [Abstract][Full Text] [Related]
30. Key amino acid residues in the regulation of soluble methane monooxygenase catalysis by component B. Brazeau BJ; Lipscomb JD Biochemistry; 2003 May; 42(19):5618-31. PubMed ID: 12741818 [TBL] [Abstract][Full Text] [Related]
31. Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase. Baldwin J; Voegtli WC; Khidekel N; Moënne-Loccoz P; Krebs C; Pereira AS; Ley BA; Huynh BH; Loehr TM; Riggs-Gelasco PJ; Rosenzweig AC; Bollinger JM J Am Chem Soc; 2001 Jul; 123(29):7017-30. PubMed ID: 11459480 [TBL] [Abstract][Full Text] [Related]
32. Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity. Green J; Dalton H J Biol Chem; 1985 Dec; 260(29):15795-801. PubMed ID: 3934164 [TBL] [Abstract][Full Text] [Related]
33. Electron transfer reactions in the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Lund J; Woodland MP; Dalton H Eur J Biochem; 1985 Mar; 147(2):297-305. PubMed ID: 3918864 [TBL] [Abstract][Full Text] [Related]
34. X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Sazinsky MH; Dunten PW; McCormick MS; DiDonato A; Lippard SJ Biochemistry; 2006 Dec; 45(51):15392-404. PubMed ID: 17176061 [TBL] [Abstract][Full Text] [Related]
35. Evidence for a mu-oxo-bridged binuclear iron cluster in the hydroxylase component of methane monooxygenase. Mössbauer and EPR studies. Fox BG; Surerus KK; Münck E; Lipscomb JD J Biol Chem; 1988 Aug; 263(22):10553-6. PubMed ID: 2839495 [TBL] [Abstract][Full Text] [Related]
36. Cofactor-independent oxygenation reactions catalyzed by soluble methane monooxygenase at the surface of a modified gold electrode. Astier Y; Balendra S; Hill HA; Smith TJ; Dalton H Eur J Biochem; 2003 Feb; 270(3):539-44. PubMed ID: 12542703 [TBL] [Abstract][Full Text] [Related]
37. Redox properties of the hydroxylase component of methane monooxygenase from Methylococcus capsulatus (Bath). Effects of protein B, reductase, and substrate. Liu KE; Lippard SJ J Biol Chem; 1991 Jul; 266(20):12836-9. PubMed ID: 1649166 [TBL] [Abstract][Full Text] [Related]
38. Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH:acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Lund J; Dalton H Eur J Biochem; 1985 Mar; 147(2):291-6. PubMed ID: 2982614 [TBL] [Abstract][Full Text] [Related]
39. Activation of the hydroxylase of sMMO from Methylococcus capsulatus (Bath) by hydrogen peroxide. Jiang Y; Wilkins PC; Dalton H Biochim Biophys Acta; 1993 Apr; 1163(1):105-12. PubMed ID: 8476925 [TBL] [Abstract][Full Text] [Related]
40. The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria. Dalton H Philos Trans R Soc Lond B Biol Sci; 2005 Jun; 360(1458):1207-22. PubMed ID: 16147517 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]