These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 1325441)
41. Structural features of covalently cross-linked hydroxylase and reductase proteins of soluble methane monooxygenase as revealed by mass spectrometric analysis. Kopp DA; Berg EA; Costello CE; Lippard SJ J Biol Chem; 2003 Jun; 278(23):20939-45. PubMed ID: 12660237 [TBL] [Abstract][Full Text] [Related]
43. Reactions of nitric oxide with the reduced non-heme diiron center of the soluble methane monooxygenase hydroxylase. Coufal DE; Tavares P; Pereira AS; Hyunh BH; Lippard SJ Biochemistry; 1999 Apr; 38(14):4504-13. PubMed ID: 10194372 [TBL] [Abstract][Full Text] [Related]
44. Abduction of iron(III) from the soluble methane monooxygenase hydroxylase and reconstitution of the binuclear site with iron and manganese. Atta M; Fontecave M; Wilkins PC; Dalton H Eur J Biochem; 1993 Oct; 217(1):217-23. PubMed ID: 8223558 [TBL] [Abstract][Full Text] [Related]
45. Alkene monooxygenase from Xanthobacter strain Py2. Purification and characterization of a four-component system central to the bacterial metabolism of aliphatic alkenes. Small FJ; Ensign SA J Biol Chem; 1997 Oct; 272(40):24913-20. PubMed ID: 9312093 [TBL] [Abstract][Full Text] [Related]
46. MMOD-induced structural changes of hydroxylase in soluble methane monooxygenase. Kim H; An S; Park YR; Jang H; Yoo H; Park SH; Lee SJ; Cho US Sci Adv; 2019 Oct; 5(10):eaax0059. PubMed ID: 31616787 [TBL] [Abstract][Full Text] [Related]
47. Component B binding to the soluble methane monooxygenase hydroxylase by saturation-recovery EPR spectroscopy of spin-labeled MMOB. MacArthur R; Sazinsky MH; Kühne H; Whittington DA; Lippard SJ; Brudvig GW J Am Chem Soc; 2002 Nov; 124(45):13392-3. PubMed ID: 12418885 [TBL] [Abstract][Full Text] [Related]
48. Mutational and structural analyses of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Brandstetter H; Whittington DA; Lippard SJ; Frederick CA Chem Biol; 1999 Jul; 6(7):441-9. PubMed ID: 10381404 [TBL] [Abstract][Full Text] [Related]
49. A stopped-flow kinetic study of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath). Green J; Dalton H Biochem J; 1989 Apr; 259(1):167-72. PubMed ID: 2497729 [TBL] [Abstract][Full Text] [Related]
50. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Newman LM; Wackett LP Biochemistry; 1995 Oct; 34(43):14066-76. PubMed ID: 7578004 [TBL] [Abstract][Full Text] [Related]
51. Structural model studies for the peroxo intermediate P and the reaction pathway from P-->Q of methane monooxygenase using broken-symmetry density functional calculations. Han WG; Noodleman L Inorg Chem; 2008 Apr; 47(8):2975-86. PubMed ID: 18366153 [TBL] [Abstract][Full Text] [Related]
52. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases. Wang W; Liang AD; Lippard SJ Acc Chem Res; 2015 Sep; 48(9):2632-9. PubMed ID: 26293615 [TBL] [Abstract][Full Text] [Related]
53. Structure of the soluble methane monooxygenase regulatory protein B. Walters KJ; Gassner GT; Lippard SJ; Wagner G Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7877-82. PubMed ID: 10393915 [TBL] [Abstract][Full Text] [Related]
55. Recombinant toluene-4-monooxygenase: catalytic and Mössbauer studies of the purified diiron and rieske components of a four-protein complex. Pikus JD; Studts JM; Achim C; Kauffmann KE; Münck E; Steffan RJ; McClay K; Fox BG Biochemistry; 1996 Jul; 35(28):9106-19. PubMed ID: 8703915 [TBL] [Abstract][Full Text] [Related]
56. Density functional studies of oxidized and reduced methane monooxygenase. Optimized geometries and exchange coupling of active site clusters. Lovell T; Li J; Noodleman L Inorg Chem; 2001 Sep; 40(20):5251-66. PubMed ID: 11559090 [TBL] [Abstract][Full Text] [Related]
57. Hydroxylation catalysis by mononuclear and dinuclear iron oxo catalysts: a methane monooxygenase model system versus the Fenton reagent Fe(IV)O(H2O)5(2+). Gopakumar G; Belanzoni P; Baerends EJ Inorg Chem; 2012 Jan; 51(1):63-75. PubMed ID: 22221279 [TBL] [Abstract][Full Text] [Related]
58. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Blazyk JL; Lippard SJ Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207 [TBL] [Abstract][Full Text] [Related]
59. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Jun; 2(6):409-18. PubMed ID: 9383443 [TBL] [Abstract][Full Text] [Related]
60. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states. Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ Chem Biol; 1995 Sep; 2(9):409-18. PubMed ID: 9432288 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]