These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1325841)

  • 1. Gel casting of resorbable polymers. 1. Processing and applications.
    Coombes AG; Heckman JD
    Biomaterials; 1992; 13(4):217-24. PubMed ID: 1325841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gel casting of resorbable polymers. 2. In-vitro degradation of bone graft substitutes.
    Coombes AG; Heckman JD
    Biomaterials; 1992; 13(5):297-307. PubMed ID: 1600032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resorbable synthetic polymers as replacements for bone graft.
    Coombes AG; Meikle MC
    Clin Mater; 1994; 17(1):35-67. PubMed ID: 10150176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial solubility parameters of poly(D,L-lactide-co-glycolide).
    Schenderlein S; Lück M; Müller BW
    Int J Pharm; 2004 Nov; 286(1-2):19-26. PubMed ID: 15500999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of formulation variables on the morphology of biodegradable microparticles prepared by spray drying.
    Clarke N; O'Connor K; Ramtoola Z
    Drug Dev Ind Pharm; 1998 Feb; 24(2):169-74. PubMed ID: 15605447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resorbable polymer fibers for ligament augmentation.
    Dürselen L; Dauner M; Hierlemann H; Planck H; Claes LE; Ignatius A
    J Biomed Mater Res; 2001; 58(6):666-72. PubMed ID: 11745519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of spray drying as a method for polylactide and polylactide-co-glycolide microsphere preparation.
    Pavanetto F; Genta I; Giunchedi P; Conti B
    J Microencapsul; 1993; 10(4):487-97. PubMed ID: 8263677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resorbable polyesters: composition, properties, applications.
    Amecke B; Bendix D; Entenmann G
    Clin Mater; 1992; 10(1-2):47-50. PubMed ID: 10171204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay of membrane formation and drug release in solution-cast films of polylactide polymers.
    Ma D; McHugh AJ
    Int J Pharm; 2010 Mar; 388(1-2):1-12. PubMed ID: 20025948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of new processing techniques in tissue engineering.
    Lu L; Mikos AG
    MRS Bull; 1996 Nov; 21(11):28-32. PubMed ID: 11541498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent.
    Young TJ; Johnston KP; Mishima K; Tanaka H
    J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended release microparticle-in-gel formulation of octreotide: Effect of polymer type on acylation of peptide during in vitro release.
    Vaishya RD; Mandal A; Patel S; Mitra AK
    Int J Pharm; 2015 Dec; 496(2):676-88. PubMed ID: 26561725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-molecule release from poly(D,L-lactide)/poly(D,L-lactide-co-glycolide) composite microparticles.
    Pollauf EJ; Kim KK; Pack DW
    J Pharm Sci; 2005 Sep; 94(9):2013-22. PubMed ID: 16052542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rupture and drug release characteristics of multi-reservoir type microspheres with poly(dl-lactide-co-glycolide) and poly(dl-lactide).
    Matsumoto A; Matsukawa Y; Horikiri Y; Suzuki T
    Int J Pharm; 2006 Dec; 327(1-2):110-6. PubMed ID: 16971073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process-induced degradation of bioresorbable PDLGA in bone tissue scaffold production.
    Little H; Themistou E; Clarke SA; Cunningham E; Buchanan F
    J Mater Sci Mater Med; 2017 Dec; 29(1):14. PubMed ID: 29285611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple measurements for prediction of drug release from polymer matrices - Solubility parameters and intrinsic viscosity.
    Madsen CG; Skov A; Baldursdottir S; Rades T; Jorgensen L; Medlicott NJ
    Eur J Pharm Biopharm; 2015 May; 92():1-7. PubMed ID: 25668778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative bone healing near eroding polylactide-polyglycolide implants of differing crystallinity in rabbit tibial bone chambers.
    Winet H; Bao JY
    J Biomater Sci Polym Ed; 1997; 8(7):517-32. PubMed ID: 9195331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of poly(lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) by electron beam radiation.
    Loo JS; Ooi CP; Boey FY
    Biomaterials; 2005 Apr; 26(12):1359-67. PubMed ID: 15482823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.