BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1325899)

  • 1. Experimental and modelling studies on the DNA cleavage by elsamicin A.
    Párraga A; Orozco M; Portugal J
    Eur J Biochem; 1992 Sep; 208(2):227-33. PubMed ID: 1325899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Product analyses in DNA strand scission by antitumor antibiotic elsamicin A.
    Uesugi M; Sugiura Y
    Biochem Biophys Res Commun; 1992 Jul; 186(1):580-7. PubMed ID: 1321617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics study of the binding of elsamicin A to DNA.
    Alhambra C; Luque FJ; Portugal J; Orozco M
    Eur J Biochem; 1995 Jun; 230(2):555-66. PubMed ID: 7607229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switch-function of amino sugar on elsamicin A, a DNA binding antitumor antibiotic.
    Uesugi M; Sugiura Y
    Nucleic Acids Symp Ser; 1990; (22):33-4. PubMed ID: 2101907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of elsamicin-DNA binding specificity by restriction enzyme cleavage.
    Párraga A; Portugal J
    FEBS Lett; 1992 Mar; 300(1):25-9. PubMed ID: 1312486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elsamicin A binding to DNA. A comparative thermodynamic characterization.
    Barceló F; Portugal J
    FEBS Lett; 2004 Oct; 576(1-2):68-72. PubMed ID: 15474012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective DNA cleavage by elsamicin A and switch function of its amino sugar group.
    Uesugi M; Sekida T; Matsuki S; Sugiura Y
    Biochemistry; 1991 Jul; 30(27):6711-5. PubMed ID: 1648389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of elsamicin A on the activity of mammalian topoisomerase I.
    Rodríguez-Campos A; Azorín F; Portugal J
    Biochemistry; 1996 Aug; 35(34):11177-82. PubMed ID: 8780522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA strand scission by enzymatically reduced mitomycin C: evidence for participation of the hydroxyl radical in the DNA damage.
    Hamana K; Kawada K; Sugioka K; Nakano M; Tero-Kubota S; Ikegami Y
    Biochem Int; 1985 Feb; 10(2):301-9. PubMed ID: 2986638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalase enhances damage to DNA by bleomycin-iron(II): the role of hydroxyl radicals.
    Gutteridge JM; Beard AP; Quinlan GJ
    Biochem Int; 1985 Mar; 10(3):441-9. PubMed ID: 2409975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chartreusin, elsamicin A and related anti-cancer antibiotics.
    Portugal J
    Curr Med Chem Anticancer Agents; 2003 Nov; 3(6):411-20. PubMed ID: 14529449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Biochem J; 1988 May; 251(3):893-9. PubMed ID: 2843167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation of free radical production to hyperoxia.
    Jamieson D; Chance B; Cadenas E; Boveris A
    Annu Rev Physiol; 1986; 48():703-19. PubMed ID: 3010832
    [No Abstract]   [Full Text] [Related]  

  • 14. Vanadyl causes hydroxyl radical mediated degradation of deoxyribose.
    Liochev S; Ivancheva E
    Free Radic Res Commun; 1991; 14(5-6):335-42. PubMed ID: 1663905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA strand scission by enzymically generated oxygen radicals.
    Brawn K; Fridovich I
    Arch Biochem Biophys; 1981 Feb; 206(2):414-9. PubMed ID: 6261698
    [No Abstract]   [Full Text] [Related]  

  • 16. An investigation on lipoperoxidation mechanisms in boar spermatozoa.
    Comaschi V; Lindner L; Farruggia G; Gesmundo N; Colombi L; Masotti L
    Biochem Biophys Res Commun; 1989 Feb; 158(3):769-75. PubMed ID: 2537636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free radical damage to deoxyribose by anthracycline, aureolic acid and aminoquinone antitumour antibiotics. An essential requirement for iron, semiquinones and hydrogen peroxide.
    Gutteridge JM; Quinlan GJ
    Biochem Pharmacol; 1985 Dec; 34(23):4099-103. PubMed ID: 2998399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron stimulation of free radical-mediated porphyrinogen oxidation by hepatic and renal mitochondria.
    Woods JS; Calas CA
    Biochem Biophys Res Commun; 1989 Apr; 160(1):101-8. PubMed ID: 2540739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen peroxide formation and iron ion oxidoreduction linked to NADH oxidation in radish plasmalemma vesicles.
    Vianello A; Zancani M; Macrí F
    Biochim Biophys Acta; 1990 Mar; 1023(1):19-24. PubMed ID: 2156562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.