These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 1326063)
1. Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. Friedman MH; Bargeron CB; Duncan DD; Hutchins GM; Mark FF J Biomech Eng; 1992 Aug; 114(3):317-20. PubMed ID: 1326063 [TBL] [Abstract][Full Text] [Related]
2. A 3D-LDA study of the relation between wall shear stress and intimal thickness in a human aortic bifurcation. Hayashi K; Yanai Y; Naiki T J Biomech Eng; 1996 Aug; 118(3):273-9. PubMed ID: 8872247 [TBL] [Abstract][Full Text] [Related]
3. The effect of compliance on wall shear in casts of a human aortic bifurcation. Duncan DD; Bargeron CB; Borchardt SE; Deters OJ; Gearhart SA; Mark FF; Friedman MH J Biomech Eng; 1990 May; 112(2):183-8. PubMed ID: 2345449 [TBL] [Abstract][Full Text] [Related]
4. Measurement of wall motion and wall shear in a compliant arterial cast. Deters OJ; Bargeron CB; Mark FF; Friedman MH J Biomech Eng; 1986 Nov; 108(4):355-8. PubMed ID: 3795882 [TBL] [Abstract][Full Text] [Related]
5. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution. Kabinejadian F; Ghista DN Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834 [TBL] [Abstract][Full Text] [Related]
6. Correlation between wall shear and intimal thickness at a coronary artery branch. Friedman MH; Bargeron CB; Deters OJ; Hutchins GM; Mark FF Atherosclerosis; 1987 Nov; 68(1-2):27-33. PubMed ID: 3689481 [TBL] [Abstract][Full Text] [Related]
7. Shear stress at a compliant model of the human carotid bifurcation. Anayiotos AS; Jones SA; Giddens DP; Glagov S; Zarins CK J Biomech Eng; 1994 Feb; 116(1):98-106. PubMed ID: 8189720 [TBL] [Abstract][Full Text] [Related]
8. A computer simulation of the blood flow at the aortic bifurcation. Lou Z; Yang WJ Biomed Mater Eng; 1991; 1(3):173-93. PubMed ID: 1842515 [TBL] [Abstract][Full Text] [Related]
9. Shear-dependent thickening of the human arterial intima. Friedman MH; Deters OJ; Bargeron CB; Hutchins GM; Mark FF Atherosclerosis; 1986 May; 60(2):161-71. PubMed ID: 3718613 [TBL] [Abstract][Full Text] [Related]
10. Correlation of human arterial morphology with hemodynamic measurements in arterial casts. Friedman MH; Hutchins GM; Bargeron CB; Deters OJ; Mark FF J Biomech Eng; 1981 Aug; 103(3):204-7. PubMed ID: 7278199 [TBL] [Abstract][Full Text] [Related]
11. Correlation of laser-Doppler-velocity measurements and endothelial cell shape in a stenosed dog aorta. Liepsch DW; Levesque M; Nerem RM; Moravec ST Adv Exp Med Biol; 1988; 242():43-50. PubMed ID: 2977525 [TBL] [Abstract][Full Text] [Related]
12. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms. Lee CS; Tarbell JM J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347 [TBL] [Abstract][Full Text] [Related]
13. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid. Moravia A; Simoëns S; El Hajem M; Bou-Saïd B; Kulisa P; Della-Schiava N; Lermusiaux P J Biomech; 2022 Jan; 130():110899. PubMed ID: 34923186 [TBL] [Abstract][Full Text] [Related]
14. Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults. Pedersen EM; Agerbaek M; Kristensen IB; Yoganathan AP Eur J Vasc Endovasc Surg; 1997 May; 13(5):443-51. PubMed ID: 9166266 [TBL] [Abstract][Full Text] [Related]
15. The effect of pulsatile frequency on wall shear in a compliant cast of a human aortic bifurcation. Kuban BD; Friedman MH J Biomech Eng; 1995 May; 117(2):219-23. PubMed ID: 7666659 [TBL] [Abstract][Full Text] [Related]
16. Pressure drop and flow rate measurements in a human aortic bifurcation cast for steady and pulsatile flow. Klanchar M; Tarbell JM J Biomech; 1989; 22(5):491-500. PubMed ID: 2777824 [TBL] [Abstract][Full Text] [Related]
17. Influence of non-Newtonian behavior of blood on flow in an elastic artery model. Dutta A; Tarbell JM J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082 [TBL] [Abstract][Full Text] [Related]
18. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. Satcher RL; Bussolari SR; Gimbrone MA; Dewey CF J Biomech Eng; 1992 Aug; 114(3):309-16. PubMed ID: 1522724 [TBL] [Abstract][Full Text] [Related]
19. [Non-newtonian behavior of blood and parietal shear stress in a Poiseuille flow]. Wang X; Stoltz JF J Mal Vasc; 1995; 20(2):117-21. PubMed ID: 7650437 [TBL] [Abstract][Full Text] [Related]
20. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]