BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1326282)

  • 1. Computer modeling studies on the subsite interactions of ribonuclease T1.
    Balaji PV; Rao VS
    J Biomol Struct Dyn; 1992 Apr; 9(5):971-89. PubMed ID: 1326282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer modeling studies on the binding of 2',5'-linked dinucleoside phosphates to ribonuclease T1-influence of subsite interactions on the substrate specificity.
    Balaji PV; Saenger W; Rao VS
    J Biomol Struct Dyn; 1993 Apr; 10(5):891-903. PubMed ID: 8391269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modes of binding of 2'-AMP to RNase T1. A computer modeling study.
    Balaji PV; Saenger W; Rao VS
    J Biomol Struct Dyn; 1992 Apr; 9(5):959-69. PubMed ID: 1524709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer modeling studies of ribonuclease T1-guanosine monophosphate complexes.
    Balaji PV; Saenger W; Rao VS
    Biopolymers; 1990; 30(3-4):257-72. PubMed ID: 2177661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis.
    Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG
    Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modelling studies of ribonuclease T1-2'-deoxy-2'-fluoroguanylyl- (3',5')-cytidine complex.
    Balaji PV; Rao VS
    Indian J Biochem Biophys; 1991; 28(5-6):358-62. PubMed ID: 1812067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subsite interactions of ribonuclease T1: Asn36 and Asn98 accelerate GpN transesterification through interactions with the leaving nucleoside N.
    Steyaert J; Haikal AF; Wyns L; Stanssens P
    Biochemistry; 1991 Sep; 30(35):8666-70. PubMed ID: 1653603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer modelling studies on the mechanism of action of ribonuclease T1.
    Balaji PV; Saenger W; Rao VS
    J Biomol Struct Dyn; 1991 Oct; 9(2):215-31. PubMed ID: 1741959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding modes of inhibitors to ribonuclease T1 as studied by nuclear magnetic resonance.
    Inagaki F; Shimada I; Miyazawa T
    Biochemistry; 1985 Feb; 24(4):1013-20. PubMed ID: 3922405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of ribonuclease T1 complexed with guanylyl-2',5'-guanosine at 1.8 A resolution.
    Koepke J; Maslowska M; Heinemann U; Saenger W
    J Mol Biol; 1989 Apr; 206(3):475-88. PubMed ID: 2541256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of monovalent cations Li+, Na+, K+, NH4+, Rb+ and Cs+ on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation.
    Tajmir-Riahi HA; Messaoudi S
    J Biomol Struct Dyn; 1992 Oct; 10(2):345-65. PubMed ID: 1334674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of RNase T1 with 3'-guanylic acid and guanosine.
    Zegers I; Haikal AF; Palmer R; Wyns L
    J Biol Chem; 1994 Jan; 269(1):127-33. PubMed ID: 8276784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of substrate uridyl 3',5'-adenosine with ribonuclease A: a molecular dynamics study.
    Seshadri K; Rao VS; Vishveshwara S
    Biophys J; 1995 Dec; 69(6):2185-94. PubMed ID: 8599627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional structure of a mutant ribonuclease T1 (Y45W) complexed with non-cognizable ribonucleotide, 2'AMP, and its comparison with a specific complex with 2'GMP.
    Hakoshima T; Itoh T; Tomita K; Goda K; Nishikawa S; Morioka H; Uesugi S; Ohtsuka E; Ikehara M
    J Mol Biol; 1992 Feb; 223(4):1013-28. PubMed ID: 1311385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of ribonuclease A complexes with 5'-diphosphoadenosine 3'-phosphate and 5'-diphosphoadenosine 2'-phosphate at 1.7 A resolution.
    Leonidas DD; Shapiro R; Irons LI; Russo N; Acharya KR
    Biochemistry; 1997 May; 36(18):5578-88. PubMed ID: 9154942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of RNase T1 complexed with the product nucleotide 3'-GMP. Structural evidence for direct interaction of histidine 40 and glutamic acid 58 with the 2'-hydroxyl group of the ribose.
    Gohda K; Oka K; Tomita K; Hakoshima T
    J Biol Chem; 1994 Jul; 269(26):17531-6. PubMed ID: 7912696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsite interactions of ribonuclease T1: binding studies of dimeric substrate analogues.
    Walz FG; Terenna B
    Biochemistry; 1976 Jun; 15(13):2837-42. PubMed ID: 820374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation of 2'GMP bound to a mutant ribonuclease T1 (Y45W) determined by X-ray diffraction and NMR methods.
    Itoh T; Tomita K; Hakoshima T; Hiroaki H; Uesugi S; Nishikawa S; Amisaki T; Morioka H; Ohtsuka E; Ikehara M
    J Biochem; 1991 Nov; 110(5):677-80. PubMed ID: 1664424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis.
    Heinemann U; Saenger W
    J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissection of the ribonuclease T1 subsite. The transesterification kinetics of Asn36Ala and Asn98Ala ribonuclease T1 for minimal dinucleoside phosphates.
    Steyaert J; Haikal AF; Stanssens P; Wyns L
    Eur J Biochem; 1992 Feb; 203(3):551-5. PubMed ID: 1735439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.