BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1326413)

  • 41. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetics of carbon catabolite repression in Saccharomycess cerevisiae: genes involved in the derepression process.
    Zimmermann FK; Kaufmann I; Rasenberger H; Haubetamann P
    Mol Gen Genet; 1977 Feb; 151(1):95-103. PubMed ID: 194140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae.
    Entian KD; Dröll L; Mecke D
    Arch Microbiol; 1983 Jun; 134(3):187-192. PubMed ID: 6311131
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ade9 is an allele of SER1 and plays an indirect role in purine biosynthesis.
    Buc PS; Rolfes RJ
    Yeast; 1999 Sep; 15(13):1347-55. PubMed ID: 10509016
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae.
    Goffrini P; Ficarelli A; Donnini C; Lodi T; Puglisi PP; Ferrero I
    Curr Genet; 1996 Mar; 29(4):316-26. PubMed ID: 8598052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae.
    Boles E; Heinisch J; Zimmermann FK
    Yeast; 1993 Jul; 9(7):761-70. PubMed ID: 8368010
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae.
    Entian KD; Zimmermann FK
    Mol Gen Genet; 1980 Jan; 177(2):345-50. PubMed ID: 6988675
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p.
    Bojunga N; Kötter P; Entian KD
    Mol Gen Genet; 1998 Dec; 260(5):453-61. PubMed ID: 9894915
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulatory regions in the yeast FBP1 and PCK1 genes.
    Mercado JJ; Gancedo JM
    FEBS Lett; 1992 Oct; 311(2):110-4. PubMed ID: 1327878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae.
    Belinchón MM; Gancedo JM
    Arch Microbiol; 2003 Oct; 180(4):293-7. PubMed ID: 12955310
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Irreversible inactivation of Saccharomyces cerevisiae fructose-1,6-bisphosphatase independent of protein phosphorylation at Ser11.
    Rose M; Entian KD; Hofmann L; Vogel RF; Mecke D
    FEBS Lett; 1988 Dec; 241(1-2):55-9. PubMed ID: 2848726
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.
    Zimmermann FK; Scheel I
    Mol Gen Genet; 1977 Jul; 154(1):75-82. PubMed ID: 197390
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae.
    Albers E; Laizé V; Blomberg A; Hohmann S; Gustafsson L
    J Biol Chem; 2003 Mar; 278(12):10264-72. PubMed ID: 12525494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast.
    Niederacher D; Entian KD
    Eur J Biochem; 1991 Sep; 200(2):311-9. PubMed ID: 1889400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and primary structure of the gene encoding fructose-1,6-bisphosphatase from Saccharomyces cerevisiae.
    Entian KD; Vogel RF; Rose M; Hofmann L; Mecke D
    FEBS Lett; 1988 Aug; 236(1):195-200. PubMed ID: 2841162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromatin structure of the yeast SUC2 promoter in regulatory mutants.
    Matallana E; Franco L; Pérez-Ortín JE
    Mol Gen Genet; 1992 Feb; 231(3):395-400. PubMed ID: 1538695
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state.
    De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J
    Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A regulatory factor, Fil1p, involved in derepression of the isocitrate lyase gene in Saccharomyces cerevisiae--a possible mitochondrial protein necessary for protein synthesis in mitochondria.
    Kanai T; Takeshita S; Atomi H; Umemura K; Ueda M; Tanaka A
    Eur J Biochem; 1998 Aug; 256(1):212-20. PubMed ID: 9746366
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deletion of SFI1, a novel suppressor of partial Ras-cAMP pathway deficiency in the yeast Saccharomyces cerevisiae, causes G(2) arrest.
    Ma P; Winderickx J; Nauwelaers D; Dumortier F; De Doncker A; Thevelein JM; Van Dijck P
    Yeast; 1999 Aug; 15(11):1097-109. PubMed ID: 10455233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.