These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1326504)

  • 1. Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition.
    Kujawa SG; Glattke TJ; Fallon M; Bobbin RP
    Hear Res; 1992 Aug; 61(1-2):106-16. PubMed ID: 1326504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contralateral sound suppresses distortion product otoacoustic emissions through cholinergic mechanisms.
    Kujawa SG; Glattke TJ; Fallon M; Bobbin RP
    Hear Res; 1993 Jun; 68(1):97-106. PubMed ID: 8376219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-varying alterations in the f2-f1 DPOAE response to continuous primary stimulation. I: Response characterization and contribution of the olivocochlear efferents.
    Kujawa SG; Fallon M; Bobbin RP
    Hear Res; 1995 May; 85(1-2):142-54. PubMed ID: 7559170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contralateral auditory stimulation alters acoustic distortion products in humans.
    Moulin A; Collet L; Duclaux R
    Hear Res; 1993 Feb; 65(1-2):193-210. PubMed ID: 8458751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound.
    Kujawa SG; Glattke TJ; Fallon M; Bobbin RP
    Hear Res; 1994 Apr; 74(1-2):122-34. PubMed ID: 8040083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of adenosine 5'-triphosphate and related agonists on cochlear function.
    Kujawa SG; Erostegui C; Fallon M; Crist J; Bobbin RP
    Hear Res; 1994 Jun; 76(1-2):87-100. PubMed ID: 7928720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscarinic signaling in the cochlea: presynaptic and postsynaptic effects on efferent feedback and afferent excitability.
    Maison SF; Liu XP; Vetter DE; Eatock RA; Nathanson NM; Wess J; Liberman MC
    J Neurosci; 2010 May; 30(19):6751-62. PubMed ID: 20463237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea.
    Housley GD; Ashmore JF
    Proc Biol Sci; 1991 May; 244(1310):161-7. PubMed ID: 1679550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells.
    Zhao HB; Liu LM; Yu N; Zhu Y; Mei L; Chen J; Liang C
    J Neurophysiol; 2022 Jan; 127(1):313-327. PubMed ID: 34907797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitude modulation of DPOAEs by acoustic stimulation of the contralateral ear.
    Harrison RV; Sharma A; Brown T; Jiwani S; James AL
    Acta Otolaryngol; 2008 Apr; 128(4):404-7. PubMed ID: 18368574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of GABAB receptors in cochlear neurons: threshold elevation suggests modulation of outer hair cell function by type II afferent fibers.
    Maison SF; Casanova E; Holstein GR; Bettler B; Liberman MC
    J Assoc Res Otolaryngol; 2009 Mar; 10(1):50-63. PubMed ID: 18925381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine, carbachol, and GABA induce no detectable change in the length of isolated outer hair cells.
    Bobbin RP; Fallon M; Puel JL; Bryant G; Bledsoe SC; Zajic G; Schacht J
    Hear Res; 1990 Aug; 47(1-2):39-52. PubMed ID: 2228797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro pharmacologic characterization of a cholinergic receptor on outer hair cells.
    Erostegui C; Norris CH; Bobbin RP
    Hear Res; 1994 Apr; 74(1-2):135-47. PubMed ID: 8040084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine, outer hair cell electromotility, and the cochlear amplifier.
    Dallos P; He DZ; Lin X; Sziklai I; Mehta S; Evans BN
    J Neurosci; 1997 Mar; 17(6):2212-26. PubMed ID: 9045745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cholinergic transmission in outer hair cell functioning evaluated by distortion product otoacoustic emissions in myasthenic patients.
    Paludetti G; Di Nardo W; D'Ecclesia A; Evoli A; Scarano E; Di Girolamo S
    Acta Otolaryngol; 2001 Jan; 121(2):119-21. PubMed ID: 11349760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of spontaneous otoacoustic emissions (SOAE) on acoustic distortion product input/output functions: does the medial efferent system act differently in the vicinity of an SOAE?
    Moulin A; Collet L; Morgon A
    Acta Otolaryngol; 1992; 112(2):210-4. PubMed ID: 1604981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Are cochlear outer hair cells the origin of otoacoustic emissions?].
    Plinkert PK; Zenner HP
    Rev Laryngol Otol Rhinol (Bord); 1990; 111(1):41-3. PubMed ID: 1983364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables.
    Veuillet E; Collet L; Duclaux R
    J Neurophysiol; 1991 Mar; 65(3):724-35. PubMed ID: 2051201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoflurane increases amplitude and incidence of evoked and spontaneous otoacoustic emissions.
    Drexl M; Henke J; Kössl M
    Hear Res; 2004 Aug; 194(1-2):135-42. PubMed ID: 15276684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.