These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1326506)

  • 1. Central auditory metabolic activity induced by intense noise exposure.
    Ryan AF; Axelsson GA; Woolf NK
    Hear Res; 1992 Aug; 61(1-2):24-30. PubMed ID: 1326506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory neural activity evoked by pure-tone stimulation as a function of intensity.
    Ryan AF; Braverman S; Woolf NK; Axelsson GA
    Brain Res; 1989 Apr; 483(2):283-93. PubMed ID: 2706521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory brain-stem response correlates of resistance to noise-induced hearing loss in Mongolian gerbils.
    Boettcher FA
    J Acoust Soc Am; 1993 Dec; 94(6):3207-14. PubMed ID: 8300955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pentobarbital and ketamine alter the pattern of 2-deoxyglucose uptake in the central auditory system of the gerbil.
    Wang ZX; Ryan AF; Woolf NK
    Hear Res; 1987; 27(2):145-55. PubMed ID: 3610843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threshold shifts in chinchillas exposed to octave bands of noise centered at 63 and 1000 Hz for three days(a).
    Burdick CK; Patterson JH; Mozo BT; Camp RT
    J Acoust Soc Am; 1978 Aug; 64(2):458-66. PubMed ID: 712007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing intensities of wide band noise increase [14C]2-deoxyglucose uptake in gerbil central auditory structures.
    Sharp FR; Ryan AF; Goodwin P; Woolf NK
    Brain Res; 1981 Dec; 230(1-2):87-96. PubMed ID: 7317792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of tonotopic representation in the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK
    Brain Res; 1988 Jun; 469(1-2):61-70. PubMed ID: 3401808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of neural activity evoked by electrical stimulation of the cochlea.
    Ryan AF; Miller JM; Wang ZX; Woolf NK
    Hear Res; 1990 Dec; 50(1-2):57-70. PubMed ID: 2076983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis.
    Heeringa AN; van Dijk P
    Hear Res; 2016 Jan; 331():47-56. PubMed ID: 26523371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How low must you go? Effects of low-level noise on cochlear neural response.
    Liu X; Li L; Chen GD; Salvi R
    Hear Res; 2020 Jul; 392():107980. PubMed ID: 32447098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure.
    Heeringa AN; van Dijk P
    Hear Res; 2014 Jun; 312():38-47. PubMed ID: 24650953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protective effect of conditioning on noise-induced hearing loss is frequency-dependent.
    Pourbakht A; Imani A
    Acta Med Iran; 2012; 50(10):664-9. PubMed ID: 23275293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional ontogeny in the central auditory pathway of the Mongolian gerbil. A 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    Exp Brain Res; 1982; 47(3):428-36. PubMed ID: 7128710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea.
    Vlajkovic SM; Housley GD; Muñoz DJ; Robson SC; Sévigny J; Wang CJ; Thorne PR
    Neuroscience; 2004; 126(3):763-73. PubMed ID: 15183524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    J Comp Neurol; 1982 Jun; 207(4):369-80. PubMed ID: 7119149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Deoxyglucose uptake patterns in response to pure tone stimuli in the aged rat inferior colliculus.
    Keithley EM; Lo J; Ryan AF
    Hear Res; 1994 Oct; 80(1):79-85. PubMed ID: 7852206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged low-level noise-induced plasticity in the peripheral and central auditory system of rats.
    Sheppard AM; Chen GD; Manohar S; Ding D; Hu BH; Sun W; Zhao J; Salvi R
    Neuroscience; 2017 Sep; 359():159-171. PubMed ID: 28711622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway.
    Gröschel M; Götze R; Ernst A; Basta D
    J Neurotrauma; 2010 Aug; 27(8):1499-507. PubMed ID: 20504154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser Doppler measurement of cochlear blood flow changes during conditioning noise exposure.
    Attanasio G; Buongiorno G; Piccoli F; Mafera B; Cordier A; Barbara M; Filipo R
    Acta Otolaryngol; 2001 Jun; 121(4):465-9. PubMed ID: 11508505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.