These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 1326621)

  • 41. Nalbuphine.
    Schmidt WK; Tam SW; Shotzberger GS; Smith DH; Clark R; Vernier VG
    Drug Alcohol Depend; 1985 Feb; 14(3-4):339-62. PubMed ID: 2986929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kappa opiate receptors mediate tail-shock induced antinociception at spinal levels.
    Watkins LR; Wiertelak EP; Maier SF
    Brain Res; 1992 Jun; 582(1):1-9. PubMed ID: 1354010
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential involvement of opioid receptors in intrathecal butorphanol-induced analgesia: compared to morphine.
    Wongchanapai W; Tsang BK; He Z; Ho IK
    Pharmacol Biochem Behav; 1998 Mar; 59(3):723-7. PubMed ID: 9512078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antagonism of morphine antinociception by intrathecally administered corticotropin-releasing factor in mice.
    Song ZH; Takemori AE
    J Pharmacol Exp Ther; 1991 Mar; 256(3):909-12. PubMed ID: 1848633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. All three types of opioid receptors in the spinal cord are important for 2/15 Hz electroacupuncture analgesia.
    Chen XH; Han JS
    Eur J Pharmacol; 1992 Feb; 211(2):203-10. PubMed ID: 1319342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antinociception after intracerebroventricular administration of naltrindole in the mouse.
    Stapelfeld A; Hammond DL; Rafferty MF
    Eur J Pharmacol; 1992 Apr; 214(2-3):273-6. PubMed ID: 1325358
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A study of central opioid receptor involvement in nitrous oxide analgesia in mice.
    Chen DC; Quock RM
    Anesth Prog; 1990 Jul; 37(4):181-5. PubMed ID: 1965769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intrathecal Tyr-W-MIF-1 produces potent, naloxone-reversible analgesia modulated by alpha 2-adrenoceptors.
    Gergen KA; Zadina JE; Kastin AJ; Paul D
    Eur J Pharmacol; 1996 Mar; 298(3):235-9. PubMed ID: 8846821
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Absence of nalbuphine anti-analgesia in the rat.
    Khasar SG; Gear RW; Levine JD
    Neurosci Lett; 2003 Jul; 345(3):165-8. PubMed ID: 12842282
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Opioid thermal antinociception in rhesus monkeys: receptor mechanisms and temperature dependency.
    Walker EA; Butelman ER; DeCosta BR; Woods JH
    J Pharmacol Exp Ther; 1993 Oct; 267(1):280-6. PubMed ID: 7901396
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kappa 3 receptors and levorphanol-induced analgesia.
    Tive L; Ginsberg K; Pick CG; Pasternak GW
    Neuropharmacology; 1992 Sep; 31(9):851-6. PubMed ID: 1331842
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of mu, delta- and kappa-opioid receptor antagonists on the pain threshold increase following muscle stimulation in the rat.
    Hoffmann P; Carlsson S; Thorén P
    Acta Physiol Scand; 1990 Nov; 140(3):353-8. PubMed ID: 1964530
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Delta opiate receptors mediate tail-shock induced antinociception at supraspinal levels.
    Watkins LR; Wiertelak EP; Maier SF
    Brain Res; 1992 Jun; 582(1):10-21. PubMed ID: 1323369
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions between laudanosine, GABA, and opioid subtype receptors: implication for laudanosine seizure activity.
    Katz Y; Weizman A; Pick CG; Pasternak GW; Liu L; Fonia O; Gavish M
    Brain Res; 1994 May; 646(2):235-41. PubMed ID: 8069669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Agonist/antagonist properties of nalbuphine, butorphanol and (-)-pentazocine in male vs. female rats.
    Craft RM; McNiel DM
    Pharmacol Biochem Behav; 2003 Apr; 75(1):235-45. PubMed ID: 12759132
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vivo characterization of the effects of human hemokinin-1 and human hemokinin-1(4-11), mammalian tachykinin peptides, on the modulation of pain in mice.
    Fu CY; Zhao YL; Dong L; Chen Q; Ni JM; Wang R
    Brain Behav Immun; 2008 Aug; 22(6):850-60. PubMed ID: 18262387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Opioid antagonists: indirect antagonism of morphine analgesia by spinal dynorphin A.
    Aksu F; Holmes BB; Fujimoto JM
    Pharmacol Biochem Behav; 1993 Jun; 45(2):409-18. PubMed ID: 8101007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maintenance of acute morphine tolerance in mice by selective blockage of kappa opioid receptors with norbinaltorphimine.
    Sofuoglu M; Portoghese PS; Takemori AE
    Eur J Pharmacol; 1992 Jan; 210(2):159-62. PubMed ID: 1318206
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Opioid antagonists naloxone, beta-funaltrexamine and naltrindole, but not nor-binaltorphimine, reverse the increased hindpaw withdrawal latency in rats induced by intrathecal administration of the calcitonin gene-related peptide antagonist CGRP8-37.
    Yu LC; Hansson P; Lundeberg T
    Brain Res; 1995 Nov; 698(1-2):23-9. PubMed ID: 8581488
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antitussive effect of dihydroetorphine in mice.
    Kamei J; Iwamoto Y; Suzuki T; Misawa M; Nagase H; Kasuya Y
    Eur J Pharmacol; 1994 Aug; 260(2-3):257-9. PubMed ID: 7988653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.