These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 1326661)
1. Phenotypes of murine leukemia virus-induced tumors: influence of 3' viral coding sequences. Ott DE; Keller J; Sill K; Rein A J Virol; 1992 Oct; 66(10):6107-16. PubMed ID: 1326661 [TBL] [Abstract][Full Text] [Related]
2. Mapping the viral sequences conferring leukemogenicity and disease specificity in Moloney and amphotropic murine leukemia viruses. DesGroseillers L; Jolicoeur P J Virol; 1984 Nov; 52(2):448-56. PubMed ID: 6092670 [TBL] [Abstract][Full Text] [Related]
3. Addition of substitution of simian virus 40 enhancer sequences into the Moloney murine leukemia virus (M-MuLV) long terminal repeat yields infectious M-MuLV with altered biological properties. Hanecak R; Pattengale PK; Fan H J Virol; 1988 Jul; 62(7):2427-36. PubMed ID: 2836623 [TBL] [Abstract][Full Text] [Related]
4. Important role of the long terminal repeat of the helper Moloney murine leukemia virus in Abelson virus-induced lymphoma. Savard P; DesGroseillers L; Rassart E; Poirier Y; Jolicoeur P J Virol; 1987 Oct; 61(10):3266-75. PubMed ID: 3041046 [TBL] [Abstract][Full Text] [Related]
5. Leukemogenicity of Moloney murine leukemia viruses carrying polyoma enhancer sequences in the long terminal repeat is dependent on the nature of the inserted polyoma sequences. Fan H; Chute H; Chao E; Pattengale PK Virology; 1988 Sep; 166(1):58-65. PubMed ID: 2842957 [TBL] [Abstract][Full Text] [Related]
6. Sequences responsible for erythroid and lymphoid leukemia in the long terminal repeats of Friend-mink cell focus-forming and Moloney murine leukemia viruses. Ishimoto A; Takimoto M; Adachi A; Kakuyama M; Kato S; Kakimi K; Fukuoka K; Ogiu T; Matsuyama M J Virol; 1987 Jun; 61(6):1861-6. PubMed ID: 3033317 [TBL] [Abstract][Full Text] [Related]
7. Precise identification of endogenous proviruses of NFS/N mice participating in recombination with moloney ecotropic murine leukemia virus (MuLV) to generate polytropic MuLVs. Alamgir AS; Owens N; Lavignon M; Malik F; Evans LH J Virol; 2005 Apr; 79(8):4664-71. PubMed ID: 15795252 [TBL] [Abstract][Full Text] [Related]
8. Endogenous retroviral env expression in primary murine leukemias: lack of xenotropic antigens but presence of distinct mink cell focus-forming env subtypes correlating with ecotropic virus inoculated and mouse strain. Cloyd MW; Evans LH J Natl Cancer Inst; 1987 Jan; 78(1):181-9. PubMed ID: 3025502 [TBL] [Abstract][Full Text] [Related]
9. Generation and pathogenicity of an NB-tropic SL3-3 murine leukemia virus. Thomas CY; Nuckols JD; Murphy C; Innes D Virology; 1993 Apr; 193(2):1013-7. PubMed ID: 8384741 [TBL] [Abstract][Full Text] [Related]
10. Escape from in vivo restriction of Moloney mink cell focus-inducing viruses driven by the Mo+PyF101 long terminal repeat (LTR) by LTR alterations. Brightman BK; Farmer C; Fan H J Virol; 1993 Dec; 67(12):7140-8. PubMed ID: 8230436 [TBL] [Abstract][Full Text] [Related]
11. 10A1 MuLV induces a murine leukemia that expresses hematopoietic stem cell markers by a mechanism that includes fli-1 integration. Ott DE; Keller J; Rein A Virology; 1994 Dec; 205(2):563-8. PubMed ID: 7975258 [TBL] [Abstract][Full Text] [Related]
12. Regions of the Moloney murine leukemia virus genome specifically related to induction of promonocytic tumors. Wolff L; Koller R J Virol; 1990 Jan; 64(1):155-60. PubMed ID: 2403439 [TBL] [Abstract][Full Text] [Related]
13. The tandem direct repeats within the long terminal repeat of murine leukemia viruses are the primary determinant of their leukemogenic potential. DesGroseillers L; Jolicoeur P J Virol; 1984 Dec; 52(3):945-52. PubMed ID: 6092722 [TBL] [Abstract][Full Text] [Related]
14. 10A1-MuLV but not the related amphotropic 4070A MuLV is highly neurovirulent: importance of sequences upstream of the structural Gag coding region. Münk C; Prassolov V; Rodenburg M; Kalinin V; Löhler J; Stocking C Virology; 2003 Aug; 313(1):44-55. PubMed ID: 12951020 [TBL] [Abstract][Full Text] [Related]
15. Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. Ott D; Friedrich R; Rein A J Virol; 1990 Feb; 64(2):757-66. PubMed ID: 2153240 [TBL] [Abstract][Full Text] [Related]
16. Importance of receptor usage, Fli1 activation, and mouse strain for the stem cell specificity of 10A1 murine leukemia virus leukemogenicity. Rodenburg M; Fischer M; Engelmann A; Harbers SO; Ziegler M; Löhler J; Stocking C J Virol; 2007 Jan; 81(2):732-42. PubMed ID: 17079317 [TBL] [Abstract][Full Text] [Related]
17. A small region of the ecotropic murine leukemia virus (MuLV) gag gene profoundly influences the types of polytropic MuLVs generated in mice. Lavignon M; Richardson J; Evans LH J Virol; 1997 Nov; 71(11):8923-7. PubMed ID: 9343260 [TBL] [Abstract][Full Text] [Related]
18. Basis for receptor specificity of nonecotropic murine leukemia virus surface glycoprotein gp70SU. Ott D; Rein A J Virol; 1992 Aug; 66(8):4632-8. PubMed ID: 1321266 [TBL] [Abstract][Full Text] [Related]
19. The helper virus envelope glycoprotein affects the disease specificity of a recombinant murine leukemia virus carrying a v-myc oncogene. Granger SW; Fan H Virus Genes; 2001 Jun; 22(3):311-9. PubMed ID: 11450949 [TBL] [Abstract][Full Text] [Related]
20. Molecular and phylogenetic analyses of a new amphotropic murine leukemia virus (MuLV-1313). Howard TM; Sheng Z; Wang M; Wu Y; Rasheed S Virol J; 2006 Dec; 3():101. PubMed ID: 17147829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]