These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 13269128)

  • 1. The basis of chloramphenicol resistance in Pseudomonas fluorescens.
    KUSHNER DJ
    Arch Biochem Biophys; 1955 Oct; 58(2):347-55. PubMed ID: 13269128
    [No Abstract]   [Full Text] [Related]  

  • 2. The action of chloramphenicol on the oxidation of succinate and related compounds by Pseudomonas fluorescens.
    KUSHNER DJ
    Arch Biochem Biophys; 1955 Oct; 58(2):332-46. PubMed ID: 13269127
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on the action of antibiotics on bacterial metabolism. I. Effect of dihydrostreptomycin or chloramphenicol on alpha-ketoglutarate fermentation by Escherichia coli or Pseudomonas fluorescens.
    KATAGIRI H; SUZUKI Y; TOCHIKURA T
    J Antibiot (Tokyo); 1959 Jul; 12():160-8. PubMed ID: 13853315
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of antibiotics on adherence of Pseudomonas aeruginosa and Pseudomonas fluorescens to A549 pneumocyte cells.
    Di Martino P; Rebière-Huët J; Hulen C
    Chemotherapy; 2000; 46(2):129-34. PubMed ID: 10671764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dependence of extracellular proteases synthesis on the growth phase of Pseudomonas fluorescens].
    Mikel'saar PCh; Vilu RO; Lakht TI
    Mikrobiologiia; 1982; 51(2):212-5. PubMed ID: 6806575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between methionine uptake and demethiolation in a methionine-utilizing mutant of Pseudomonas fluorescens UK1.
    Laakso S
    J Gen Microbiol; 1976 Aug; 96(2):391-4. PubMed ID: 822130
    [No Abstract]   [Full Text] [Related]  

  • 7. Bacteriology and in vitro antimicrobial susceptibility of the Pseudomonas fluorescens group isolated from clinical specimens.
    Martin WJ; Maker MD; Washington JA
    Am J Clin Pathol; 1973 Dec; 60(6):831-5. PubMed ID: 4357124
    [No Abstract]   [Full Text] [Related]  

  • 8. Antibiotic and antimicrobial peptide combinations: synergistic inhibition of Pseudomonas fluorescens and antibiotic-resistant variants.
    Naghmouchi K; Le Lay C; Baah J; Drider D
    Res Microbiol; 2012 Feb; 163(2):101-8. PubMed ID: 22172555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physico-chemical factors affect chloramphenicol efflux and EmhABC efflux pump expression in Pseudomonas fluorescens cLP6a.
    Adebusuyi A; Foght J
    Res Microbiol; 2013; 164(2):172-80. PubMed ID: 23142491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of a chloramphenicol acetyltransferase determinant found in the chromosome of Pseudomonas aeruginosa.
    White PA; Stokes HW; Bunny KL; Hall RM
    FEMS Microbiol Lett; 1999 Jun; 175(1):27-35. PubMed ID: 10361706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of drug resistance to myxococcus from bacteria carrying drug-resistance factors.
    Parish JH
    J Gen Microbiol; 1975 Apr; 87(2):198-210. PubMed ID: 806655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Studies on chloramphenicol inactivation by microorganisms. 2. Relation between chloramphenicol inactivation and chloramphenicol resistance in various microorganisms].
    MIYAMURA S; OKETANI S
    Nihon Saikingaku Zasshi; 1962 Apr; 17():294-6. PubMed ID: 14474821
    [No Abstract]   [Full Text] [Related]  

  • 13. [The influence of chloramphenicol-resistance on the virulence of Salmonella typhosa and Salmonella schottmuelleri].
    DJOURITCHITCH M
    C R Hebd Seances Acad Sci; 1955 Jul; 241(1):131-3. PubMed ID: 13250788
    [No Abstract]   [Full Text] [Related]  

  • 14. Altered growth requirements accompanying chloramphenicol resistance in Micrococcus pyogenes var. aureus.
    RAMSEY HH; PADRON JL
    Antibiot Chemother (Northfield); 1954 May; 4(5):537-45. PubMed ID: 24543027
    [No Abstract]   [Full Text] [Related]  

  • 15. A rapid emergence of chloramphenicol resistance by Escherichia coli in the presence of p-aminosalicylate (PAS).
    TSUKAMURA M
    J Antibiot (Tokyo); 1962 Jan; 15():44-5. PubMed ID: 14039841
    [No Abstract]   [Full Text] [Related]  

  • 16. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa.
    Wang J; Liu JH
    FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of antibiotics on Pseudomonas aeruginosa NK125502 and Pseudomonas fluorescens MF0 biofilm formation on immobilized fibronectin.
    Gagnière H; Di Martino P
    J Chemother; 2004 Jun; 16(3):244-7. PubMed ID: 15330319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of chloramphenicol resistance in E. coli. III. The total amino-acid composition of chloramphenicol resistant E. coli and electrophoretical pattern of its beta-galactosidase.
    OKAMOTO S; OHTAKI K; MIZUNO D
    Jpn J Med Sci Biol; 1959 Jun; 12():125-31. PubMed ID: 14428522
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of antibiotics on adherence of Pseudomonas aeruginosa and Pseudomonas fluorescens to human fibronectin.
    Di Martino P
    Chemotherapy; 2001; 47(5):344-9. PubMed ID: 11561136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis of bacterial resistance to chloramphenicol and florfenicol.
    Schwarz S; Kehrenberg C; Doublet B; Cloeckaert A
    FEMS Microbiol Rev; 2004 Nov; 28(5):519-42. PubMed ID: 15539072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.