These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1326983)

  • 1. Involvement of arginine residues in the allosteric activation and inhibition of Synechocystis PCC 6803 ADPglucose pyrophosphorylase.
    Iglesias AA; Kakefuda G; Preiss J
    J Protein Chem; 1992 Apr; 11(2):119-28. PubMed ID: 1326983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADP-glucose pyrophosphorylase by phosphate.
    Sheng J; Preiss J
    Biochemistry; 1997 Oct; 36(42):13077-84. PubMed ID: 9335570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for an arginine residue at the allosteric sites of spinach leaf ADPglucose pyrophosphorylase.
    Ball KL; Preiss J
    J Protein Chem; 1992 Jun; 11(3):231-8. PubMed ID: 1326986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationships of cyanobacterial ADP-glucose pyrophosphorylase. Site-directed mutagenesis and chemical modification of the activator-binding sites of ADP-glucose pyrophosphorylase from Anabaena PCC 7120.
    Charng YY; Iglesias AA; Preiss J
    J Biol Chem; 1994 Sep; 269(39):24107-13. PubMed ID: 7929064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of lysine382, the activator-binding site, of ADP-glucose pyrophosphorylase from Anabaena PCC 7120.
    Sheng J; Charng YY; Preiss J
    Biochemistry; 1996 Mar; 35(9):3115-21. PubMed ID: 8608152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of arginine residues in the allosteric activation of Escherichia coli ADP-glucose synthetase.
    Carlson CA; Preiss J
    Biochemistry; 1982 Apr; 21(8):1929-34. PubMed ID: 6282325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric sites of the large subunit of the spinach leaf ADPglucose pyrophosphorylase.
    Ball K; Preiss J
    J Biol Chem; 1994 Oct; 269(40):24706-11. PubMed ID: 7929144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory and Structural Properties of the Cyanobacterial ADPglucose Pyrophosphorylases.
    Iglesias AA; Kakefuda G; Preiss J
    Plant Physiol; 1991 Nov; 97(3):1187-95. PubMed ID: 16668507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ADP-glucose pyrophosphorylase from Rhodobacter sphaeroides 2.4.1: evidence for the involvement of arginine in allosteric regulation.
    Meyer CR; Borra M; Igarashi R; Lin YS; Springsteel M
    Arch Biochem Biophys; 1999 Dec; 372(1):179-88. PubMed ID: 10562432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the effect of temperature on the activity and stability of cyanobacterial ADP-glucose pyrophosphorylase.
    Gómez-Casati DF; Preiss J; Iglesias AA
    Arch Biochem Biophys; 2000 Dec; 384(2):319-26. PubMed ID: 11368319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The N-terminal region is important for the allosteric activation and inhibition of the Escherichia coli ADP-glucose pyrophosphorylase.
    Wu MX; Preiss J
    Arch Biochem Biophys; 1998 Oct; 358(1):182-8. PubMed ID: 9750179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity labeling of the allosteric activator site(s) of spinach leaf ADP-glucose pyrophosphorylase.
    Morell M; Bloom M; Preiss J
    J Biol Chem; 1988 Jan; 263(2):633-7. PubMed ID: 2826457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of functionally important amino-terminal arginines of Agrobacterium tumefaciens ADP-glucose pyrophosphorylase by alanine scanning mutagenesis.
    Gómez-Casati DF; Igarashi RY; Berger CN; Brandt ME; Iglesias AA; Meyer CR
    Biochemistry; 2001 Aug; 40(34):10169-78. PubMed ID: 11513594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli E-39 ADPglucose synthetase has different activation kinetics from the wild-type allosteric enzyme.
    Gardiol A; Preiss J
    Arch Biochem Biophys; 1990 Jul; 280(1):175-80. PubMed ID: 2162151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADPglucose pyrophosphorylase: basic science and applications in biotechnology.
    Preiss J
    Biotechnol Annu Rev; 1996; 2():259-79. PubMed ID: 9704099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of an amino acid residue in the activator-binding site of cyanobacterial ADP-glucose pyrophosphorylase causes alteration in activator specificity.
    Charng YY; Sheng J; Preiss J
    Arch Biochem Biophys; 1995 Apr; 318(2):476-80. PubMed ID: 7733679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the allosteric activator site of Escherichia coli ADP-glucose synthetase by trinitrobenzenesulfonate.
    Carlson CA; Preiss J
    Biochemistry; 1981 Dec; 20(26):7519-28. PubMed ID: 6275883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and structural analysis of the ultrasensitive behaviour of cyanobacterial ADP-glucose pyrophosphorylase.
    Gómez Casati DF; Aon MA; Iglesias AA
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):139-47. PubMed ID: 10926837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of chimeric ADPglucose pyrophosphorylases of Escherichia coli and Agrobacterium tumefaciens. Importance of the C-terminus on the selectivity for allosteric regulators.
    Ballicora MA; Sesma JI; Iglesias AA; Preiss J
    Biochemistry; 2002 Jul; 41(30):9431-7. PubMed ID: 12135365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.