These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
54 related articles for article (PubMed ID: 1326993)
1. Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Servent D; Ducrocq C; Henry Y; Servy C; Lenfant M Biotechnol Appl Biochem; 1992 Jun; 15(3):257-66. PubMed ID: 1326993 [TBL] [Abstract][Full Text] [Related]
2. Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Servent D; Ducrocq C; Henry Y; Guissani A; Lenfant M Biochim Biophys Acta; 1991 Jul; 1074(2):320-5. PubMed ID: 1648402 [TBL] [Abstract][Full Text] [Related]
3. Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium. Ducrocq C; Servy C; Lenfant M Biotechnol Appl Biochem; 1990 Jun; 12(3):325-30. PubMed ID: 2113815 [TBL] [Abstract][Full Text] [Related]
4. Nitroglycerin metabolism in subcellular fractions of rabbit liver. Dose dependency of glyceryl dinitrate formation and possible involvement of multiple isozymes of glutathione S-transferases. Lau DT; Benet LZ Drug Metab Dispos; 1990; 18(3):292-7. PubMed ID: 1974188 [TBL] [Abstract][Full Text] [Related]
5. Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases. Weber GF; Waxman DJ Arch Biochem Biophys; 1993 Dec; 307(2):369-78. PubMed ID: 8274024 [TBL] [Abstract][Full Text] [Related]
6. Particular ability of cytochrome P-450 CYP3A to reduce glyceryl trinitrate in rat liver microsomes: subsequent formation of nitric oxide. Delaforge M; Servent D; Wirsta P; Ducrocq C; Mansuy D; Lenfant M Chem Biol Interact; 1993 Feb; 86(2):103-17. PubMed ID: 8448809 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: involvement of cytochrome P-450. Servent D; Delaforge M; Ducrocq C; Mansuy D; Lenfant M Biochem Biophys Res Commun; 1989 Sep; 163(3):1210-6. PubMed ID: 2506859 [TBL] [Abstract][Full Text] [Related]
8. Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins. Martin W; Villani GM; Jothianandan D; Furchgott RF J Pharmacol Exp Ther; 1985 Jun; 233(3):679-85. PubMed ID: 2861277 [TBL] [Abstract][Full Text] [Related]
9. Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. Masaphy S; Levanon D; Henis Y; Venkateswarlu K; Kelly SL FEMS Microbiol Lett; 1996 Jan; 135(1):51-5. PubMed ID: 8598277 [TBL] [Abstract][Full Text] [Related]
10. In vitro metabolism of (nitrooxy)butyl ester nitric oxide-releasing compounds: comparison with glyceryl trinitrate. Govoni M; Casagrande S; Maucci R; Chiroli V; Tocchetti P J Pharmacol Exp Ther; 2006 May; 317(2):752-61. PubMed ID: 16424150 [TBL] [Abstract][Full Text] [Related]
11. A common pathway for nitric oxide release from NO-aspirin and glyceryl trinitrate. Grosser N; Schröder H Biochem Biophys Res Commun; 2000 Jul; 274(1):255-8. PubMed ID: 10903927 [TBL] [Abstract][Full Text] [Related]
12. Interaction of nitric oxide with cytochrome P450 BM3. Quaroni LG; Seward HE; McLean KJ; Girvan HM; Ost TW; Noble MA; Kelly SM; Price NC; Cheesman MR; Smith WE; Munro AW Biochemistry; 2004 Dec; 43(51):16416-31. PubMed ID: 15610036 [TBL] [Abstract][Full Text] [Related]
13. Bioactivation of tetrachloroethylene. Role of glutathione S-transferase-catalyzed conjugation versus cytochrome P-450-dependent phospholipid alkylation. Dekant W; Martens G; Vamvakas S; Metzler M; Henschler D Drug Metab Dispos; 1987; 15(5):702-9. PubMed ID: 2891489 [TBL] [Abstract][Full Text] [Related]
14. Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Matsuzaki F; Wariishi H Biochem Biophys Res Commun; 2005 Sep; 334(4):1184-90. PubMed ID: 16039998 [TBL] [Abstract][Full Text] [Related]
15. Distribution of enzymes involved in metabolism of polycyclic aromatic hydrocarbons among rat liver endomembranes and plasma membranes. Stasiecki P; Oesch F; Bruder G; Jarasch ED; Franke WW Eur J Cell Biol; 1980 Apr; 21(1):79-92. PubMed ID: 6769676 [TBL] [Abstract][Full Text] [Related]
16. Modulation by iron of hepatic microsomal and nuclear cytochrome P450, and cytosolic glutathione S-transferase and peroxidase in C57BL/10ScSn mice induced with polychlorinated biphenyls (Aroclor 1254). Madra S; Mann F; Francis JE; Manson MM; Smith AG Toxicol Appl Pharmacol; 1996 Jan; 136(1):79-86. PubMed ID: 8560483 [TBL] [Abstract][Full Text] [Related]
17. Influence of the endothelium on ex vivo tolerance and metabolism of glyceryl trinitrate in rat aorta. de la Lande IS; Siebert TE; Bennett CL; Stafford I; Horowitz JD Eur J Pharmacol; 2004 Feb; 486(2):201-7. PubMed ID: 14975709 [TBL] [Abstract][Full Text] [Related]
18. The transformation of glyceryl trinitrate and other nitrates by glutathione-organic nitrate reductase. Needleman P; Hunter FE Mol Pharmacol; 1965 Jul; 1(1):77-86. PubMed ID: 4378648 [No Abstract] [Full Text] [Related]
19. Possible metabolic pathways of conversion of formaldoxime and glyceryl trinitrate to NO. Chalupský K; Bartík P; Eklová S; Entlicher G Gen Physiol Biophys; 2003 Jun; 22(2):233-42. PubMed ID: 14661735 [TBL] [Abstract][Full Text] [Related]