These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 1327111)
1. Preparation and spectroscopic characterization of a coupled binuclear center in cobalt(II)-substituted hemocyanin. Bubacco L; Magliozzo RS; Beltramini M; Salvato B; Peisach J Biochemistry; 1992 Sep; 31(38):9294-303. PubMed ID: 1327111 [TBL] [Abstract][Full Text] [Related]
2. The binding of azide to copper-containing and cobalt-containing forms of hemocyanin from the mediterranean crab Carcinus aestuarii. Alzuet G; Bubacco L; Casella L; Rocco GP; Salvato B; Beltramini M Eur J Biochem; 1997 Jul; 247(2):688-94. PubMed ID: 9266714 [TBL] [Abstract][Full Text] [Related]
3. An x-ray absorption near edge structure spectroscopy study of metal coordination in Co(II)-substituted Carcinus maenas hemocyanin. Della Longa S; Bianconi A; Palladino L; Simonelli B; Congiu Castellano A; Borghi E; Barteri M; Beltramini M; Rocco GP; Salvato B Biophys J; 1993 Dec; 65(6):2680-91. PubMed ID: 8312502 [TBL] [Abstract][Full Text] [Related]
4. Cu(II) coordination in arthropod and mollusk green half-methemocyanins analyzed by electron spin-echo envelope modulation spectroscopy. Magliozzo RS; Bubacco L; McCracken J; Jiang F; Beltramini M; Salvato B; Peisach J Biochemistry; 1995 Feb; 34(5):1513-23. PubMed ID: 7849010 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of mononuclear Cu(II) and its nitrite complex in the active site of Carcinus maenas hemocyanin. Bubacco L; Magliozzo RS; Wirt MD; Beltramini M; Salvato B; Peisach J Biochemistry; 1995 Feb; 34(5):1524-33. PubMed ID: 7849011 [TBL] [Abstract][Full Text] [Related]
6. Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanins: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Brouwer M; Bonaventura C; Bonaventura J Biochemistry; 1983 Sep; 22(20):4713-23. PubMed ID: 6626526 [TBL] [Abstract][Full Text] [Related]
7. Preparation of a spectral probe derivative of the hemocyanin biopolymer: effects of allosteric interactions on the coupled binuclear copper active site. Hwang YT; Solomon EI Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2564-8. PubMed ID: 6283534 [TBL] [Abstract][Full Text] [Related]
8. Cobalt tyrosinase: replacement of the binuclear copper of Neurospora tyrosinase by cobalt. Rüegg C; Lerch K Biochemistry; 1981 Mar; 20(5):1256-62. PubMed ID: 6452896 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic studies on cadmium (II)- and cobalt(II)-substituted metallothionein from the crab Cancer pagurus. Evidence for one additional low-affinity metal-binding site. Overnell J; Good M; Vasàk M Eur J Biochem; 1988 Feb; 172(1):171-7. PubMed ID: 2831057 [TBL] [Abstract][Full Text] [Related]
10. Co(II) derivatives of Cu,Zn-superoxide dismutase with the cobalt bound in the place of copper. A new spectroscopic tool for the study of the active site. Desideri A; Cocco D; Calabrese L; Rotilio G Biochim Biophys Acta; 1984 Mar; 785(3):111-7. PubMed ID: 6322852 [TBL] [Abstract][Full Text] [Related]
11. Successful preparation of cobalt(II)-substituted hemocyanin. Suzuki S; Mori W; Kino J; Nakao Y; Nakahara A J Biochem; 1980 Oct; 88(4):1207-9. PubMed ID: 7451415 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopic properties of the cobalt(II)-substituted alpha-fragment of rabbit liver metallothionein. Good M; Vasák M Biochemistry; 1986 Jun; 25(11):3328-34. PubMed ID: 3524678 [TBL] [Abstract][Full Text] [Related]
13. Spectroscopic and chemical approaches to the study of metal-thiolate clusters in metallothionein (MT). Vasák M; Overnell J; Good M Experientia Suppl; 1987; 52():179-89. PubMed ID: 2822462 [TBL] [Abstract][Full Text] [Related]
14. Luminescence properties of the dinuclear copper complex in the active site of hemocyanins. Beltramini M; di Muro P; Rocco GP; Salvato B Arch Biochem Biophys; 1994 Sep; 313(2):318-27. PubMed ID: 8080279 [TBL] [Abstract][Full Text] [Related]
15. Spectroscopic characterization of the metal-binding sites in the periplasmic metal-sensor domain of CnrX from Cupriavidus metallidurans CH34. Trepreau J; de Rosny E; Duboc C; Sarret G; Petit-Hartlein I; Maillard AP; Imberty A; Proux O; Covès J Biochemistry; 2011 Oct; 50(42):9036-45. PubMed ID: 21942751 [TBL] [Abstract][Full Text] [Related]
16. Viviparus ater hemocyanin: investigation of the dioxygen-binding site and stability of the oxy- and apo-forms. Georgieva DN; Stoeva S; Voelter W; Genov N Z Naturforsch C J Biosci; 2001; 56(9-10):843-7. PubMed ID: 11724393 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic and computational studies of reversible O Fischer AA; Lindeman SV; Fiedler AT Dalton Trans; 2017 Oct; 46(39):13229-13241. PubMed ID: 28686274 [TBL] [Abstract][Full Text] [Related]
18. The nature of the binuclear copper site in Limulus and other hemocyanins. Solomon EI; Eickman NC; Himmelwright RS; Hwang YT; Plon SE; Wilcox DE Prog Clin Biol Res; 1982; 81():189-230. PubMed ID: 6289350 [No Abstract] [Full Text] [Related]
19. Octahedral metal coordination in the active site of glyoxalase I as evidenced by the properties of Co(II)-glyoxalase I. Sellin S; Eriksson LE; Aronsson AC; Mannervik B J Biol Chem; 1983 Feb; 258(4):2091-3. PubMed ID: 6296126 [TBL] [Abstract][Full Text] [Related]
20. Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. D'souza VM; Bennett B; Copik AJ; Holz RC Biochemistry; 2000 Apr; 39(13):3817-26. PubMed ID: 10736182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]