BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1327160)

  • 1. Catalysis by mutants of human carbonic anhydrase II: effects of replacing hydrophobic residues 198 and 204.
    Taoka S; Chen X; Tarnuzzer RW; Van Heeke G; Tu C; Silverman DN
    Biochim Biophys Acta; 1992 Oct; 1159(3):274-8. PubMed ID: 1327160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic enhancement of human carbonic anhydrase III by replacement of phenylalanine-198 with leucine.
    LoGrasso PV; Tu CK; Jewell DA; Wynns GC; Laipis PJ; Silverman DN
    Biochemistry; 1991 Aug; 30(34):8463-70. PubMed ID: 1909176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the catalytic properties of human carbonic anhydrase III by site-directed mutagenesis.
    Jewell DA; Tu CK; Paranawithana SR; Tanhauser SM; LoGrasso PV; Laipis PJ; Silverman DN
    Biochemistry; 1991 Feb; 30(6):1484-90. PubMed ID: 1899618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and spectroscopic studies of hydrophilic amino acid substitutions in the hydrophobic pocket of human carbonic anhydrase II.
    Krebs JF; Rana F; Dluhy RA; Fierke CA
    Biochemistry; 1993 May; 32(17):4496-505. PubMed ID: 8485128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buffer enhancement of proton transfer in catalysis by human carbonic anhydrase III.
    Tu CK; Paranawithana SR; Jewell DA; Tanhauser SM; LoGrasso PV; Wynns GC; Laipis PJ; Silverman DN
    Biochemistry; 1990 Jul; 29(27):6400-5. PubMed ID: 2169869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of amino acid replacement at position 198 on catalytic properties of zinc-bound water in human carbonic anhydrase III.
    LoGrasso PV; Tu C; Chen X; Taoka S; Laipis PJ; Silverman DN
    Biochemistry; 1993 Jun; 32(22):5786-91. PubMed ID: 8504098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction and influence of phenylalanine-198 and threonine-199 on catalysis by human carbonic anhydrase III.
    Chen X; Tu C; LoGrasso PV; Laipis PJ; Silverman DN
    Biochemistry; 1993 Aug; 32(31):7861-5. PubMed ID: 8347590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of catalytic efficiency by the combination of site-specific mutations in a carbonic anhydrase-related protein.
    Elleby B; Sjöblom B; Tu C; Silverman DN; Lindskog S
    Eur J Biochem; 2000 Oct; 267(19):5908-15. PubMed ID: 10998050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of active-site residues and catalytic activity of human carbonic anhydrase III.
    Tu C; Chen X; Ren X; LoGrasso PV; Jewell DA; Laipis PJ; Silverman DN
    J Biol Chem; 1994 Sep; 269(37):23002-6. PubMed ID: 8083199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle.
    Tu CK; Thomas HG; Wynns GC; Silverman DN
    J Biol Chem; 1986 Aug; 261(22):10100-3. PubMed ID: 3090030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional consequences of engineering the hydrophobic pocket of carbonic anhydrase II.
    Fierke CA; Calderone TL; Krebs JF
    Biochemistry; 1991 Nov; 30(46):11054-63. PubMed ID: 1657158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intramolecular proton transfer from multiple sites in catalysis by murine carbonic anhydrase V.
    Earnhardt JN; Qian M; Tu C; Laipis PJ; Silverman DN
    Biochemistry; 1998 May; 37(20):7649-55. PubMed ID: 9585580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic properties of murine carbonic anhydrase VII.
    Earnhardt JN; Qian M; Tu C; Lakkis MM; Bergenhem NC; Laipis PJ; Tashian RE; Silverman DN
    Biochemistry; 1998 Jul; 37(30):10837-45. PubMed ID: 9692974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate and aspartate as proton shuttles in mutants of carbonic anhydrase.
    Qian M; Tu C; Earnhardt JN; Laipis PJ; Silverman DN
    Biochemistry; 1997 Dec; 36(50):15758-64. PubMed ID: 9398305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V.
    Heck RW; Boriack-Sjodin PA; Qian M; Tu C; Christianson DW; Laipis PJ; Silverman DN
    Biochemistry; 1996 Sep; 35(36):11605-11. PubMed ID: 8794740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hydrophilic residues in proton transfer during catalysis by human carbonic anhydrase II.
    Zheng J; Avvaru BS; Tu C; McKenna R; Silverman DN
    Biochemistry; 2008 Nov; 47(46):12028-36. PubMed ID: 18942852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalysis and inhibition of human carbonic anhydrase IV.
    Baird TT; Waheed A; Okuyama T; Sly WS; Fierke CA
    Biochemistry; 1997 Mar; 36(9):2669-78. PubMed ID: 9054574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the conserved active-site residues Tyr7, Glu106 and Thr199 for the catalytic function of human carbonic anhydrase II.
    Liang Z; Xue Y; Behravan G; Jonsson BH; Lindskog S
    Eur J Biochem; 1993 Feb; 211(3):821-7. PubMed ID: 8436138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic and inhibitor-binding properties of some active-site mutants of human carbonic anhydrase I.
    Engstrand C; Jonsson BH; Lindskog S
    Eur J Biochem; 1995 May; 229(3):696-702. PubMed ID: 7758465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton transfer to residues of basic pK(a) during catalysis by carbonic anhydrase.
    Qian M; Earnhardt JN; Wadhwa NR; Tu C; Laipis PJ; Silverman DN
    Biochim Biophys Acta; 1999 Sep; 1434(1):1-5. PubMed ID: 10556554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.