BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1327599)

  • 1. A micronucleus-limited sequence family in Tetrahymena thermophila: organization and sequence conservation.
    Tsao NN; Tsao SG; Pearlman RE
    Dev Genet; 1992; 13(1):75-9. PubMed ID: 1327599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varied truncation and clustering characterize some short repeats identified in micronucleus-specific DNA of Tetrahymena thermophila.
    Huvos P
    Gene; 2009 Dec; 448(2):174-9. PubMed ID: 19619624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A member of a repeat family is the source of an insertion-deletion polymorphism inside a developmentally eliminated sequence of Tetrahymena thermophila.
    Huvos P
    J Mol Biol; 2004 Mar; 336(5):1061-73. PubMed ID: 15037069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive changes in the locations and sequence content of developmentally deleted DNA between Tetrahymena thermophila and its closest relative, T. malaccensis.
    Huvos PE
    J Eukaryot Microbiol; 2007; 54(1):73-82. PubMed ID: 17300523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A non-long terminal repeat retrotransposon family is restricted to the germ line micronucleus of the ciliated protozoan Tetrahymena thermophila.
    Fillingham JS; Thing TA; Vythilingum N; Keuroghlian A; Bruno D; Golding GB; Pearlman RE
    Eukaryot Cell; 2004 Feb; 3(1):157-69. PubMed ID: 14871946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A developmentally eliminated sequence in the flanking region of the histone H1 gene in Tetrahymena thermophila contains short repeats.
    Huvos PE; Wu M; Gorovsky MA
    J Eukaryot Microbiol; 1998; 45(2):189-97. PubMed ID: 9561773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A small family of elements with long inverted repeats is located near sites of developmentally regulated DNA rearrangement in Tetrahymena thermophila.
    Wells JM; Ellingson JL; Catt DM; Berger PJ; Karrer KM
    Mol Cell Biol; 1994 Sep; 14(9):5939-49. PubMed ID: 8065327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel family of mobile genetic elements is limited to the germline genome in Tetrahymena thermophila.
    Wuitschick JD; Gershan JA; Lochowicz AJ; Li S; Karrer KM
    Nucleic Acids Res; 2002 Jun; 30(11):2524-37. PubMed ID: 12034842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway.
    Saveliev SV; Cox MM
    EMBO J; 1996 Jun; 15(11):2858-69. PubMed ID: 8654384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of micronucleus-limited DNA in programmed deletion of mse2.9 during macronuclear development of Tetrahymena thermophila.
    Fillingham JS; Pearlman RE
    Eukaryot Cell; 2004 Apr; 3(2):288-301. PubMed ID: 15075259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of the SerL paralogs of Tetrahymena thermophila.
    Doerder FP; Gerber CA
    Biochem Biophys Res Commun; 2000 Nov; 278(3):621-6. PubMed ID: 11095959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrahymena nuclear proteins that bind to a micronucleus-specific sequence during vegetative growth.
    Katoh M; Watanabe Y; Numata O
    Zoolog Sci; 1996 Aug; 13(4):527-31. PubMed ID: 8940907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila.
    Kirk KE; Blackburn EH
    Genes Dev; 1995 Jan; 9(1):59-71. PubMed ID: 7828852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular structure in developmentally eliminated DNA in Tetrahymena may be a consequence of frequent insertions and deletions.
    Huvos P
    J Mol Biol; 2004 Mar; 336(5):1075-86. PubMed ID: 15037070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional evolution of Tetrahymena metallothioneins: new insights into the gene family of Tetrahymena thermophila.
    Santovito G; Formigari A; Boldrin F; Piccinni E
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Jan; 144(4):391-7. PubMed ID: 17208053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide characterization of Tetrahymena thermophila chromosome breakage sites. II. Physical and genetic mapping.
    Cassidy-Hanley D; Bisharyan Y; Fridman V; Gerber J; Lin C; Orias E; Orias JD; Ryder H; Vong L; Hamilton EP
    Genetics; 2005 Aug; 170(4):1623-31. PubMed ID: 15956676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reorganization of unique and repetitive sequences during nuclear development in Tetrahymena thermophila.
    Brunk CF; Tsao SG; Diamond CH; Ohashi PS; Tsao NN; Pearlman RE
    Can J Biochem; 1982 Sep; 60(9):847-53. PubMed ID: 7172094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic and proteomic evidence for a second family of dense core granule cargo proteins in Tetrahymena thermophila.
    Bowman GR; Smith DG; Michael Siu KW; Pearlman RE; Turkewitz AP
    J Eukaryot Microbiol; 2005; 52(4):291-7. PubMed ID: 16014006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kiddo, a new transposable element family closely associated with rice genes.
    Yang G; Dong J; Chandrasekharan MB; Hall TC
    Mol Genet Genomics; 2001 Nov; 266(3):417-24. PubMed ID: 11713671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.