BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 1327679)

  • 1. Persistent signalling and changes in presynaptic function in long-term potentiation.
    Malgaroli A; Malinow R; Schulman H; Tsien RW
    Ciba Found Symp; 1992; 164():176-91; discussion 192-6. PubMed ID: 1327679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP.
    Malinow R; Schulman H; Tsien RW
    Science; 1989 Aug; 245(4920):862-6. PubMed ID: 2549638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of synaptic facilitation by postsynaptic Ca2+/CaM pathways in hippocampal CA1 neurons.
    Wang JH; Kelly PT
    J Neurophysiol; 1996 Jul; 76(1):276-86. PubMed ID: 8836224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
    Sanhueza M; McIntyre CC; Lisman JE
    J Neurosci; 2007 May; 27(19):5190-9. PubMed ID: 17494705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation.
    Makhinson M; Chotiner JK; Watson JB; O'Dell TJ
    J Neurosci; 1999 Apr; 19(7):2500-10. PubMed ID: 10087064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms.
    Wang JH; Kelly PT
    J Neurophysiol; 1997 Nov; 78(5):2707-16. PubMed ID: 9356420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation.
    Malenka RC; Kauer JA; Perkel DJ; Mauk MD; Kelly PT; Nicoll RA; Waxham MN
    Nature; 1989 Aug; 340(6234):554-7. PubMed ID: 2549423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-driven postsynaptic translocation of CaMKII.
    Merrill MA; Chen Y; Strack S; Hell JW
    Trends Pharmacol Sci; 2005 Dec; 26(12):645-53. PubMed ID: 16253351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses.
    Li HB; Jackson MF; Yang K; Trepanier C; Salter MW; Orser BA; Macdonald JF
    Hippocampus; 2011 Oct; 21(10):1053-61. PubMed ID: 20865743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1.
    Finley J
    Med Hypotheses; 2018 Jul; 116():61-73. PubMed ID: 29857913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BDNF-induced local protein synthesis and synaptic plasticity.
    Leal G; Comprido D; Duarte CB
    Neuropharmacology; 2014 Jan; 76 Pt C():639-56. PubMed ID: 23602987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors.
    Rosenberg N; Gerber U; Ster J
    J Neurosci; 2016 Nov; 36(45):11521-11531. PubMed ID: 27911756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium/calmodulin-dependent protein kinase II is associated with the N-methyl-D-aspartate receptor.
    Leonard AS; Lim IA; Hemsworth DE; Horne MC; Hell JW
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):3239-44. PubMed ID: 10077668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of nitric oxide and GluR1 in presynaptic and postsynaptic components of neocortical potentiation.
    Hardingham N; Fox K
    J Neurosci; 2006 Jul; 26(28):7395-404. PubMed ID: 16837587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the anoxia-induced long-term synaptic potentiation in area CA1 of the rat hippocampus.
    Hsu KS; Huang CC
    Br J Pharmacol; 1997 Oct; 122(4):671-81. PubMed ID: 9375963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity.
    Wang JH; Kelly PT
    Neuron; 1995 Aug; 15(2):443-52. PubMed ID: 7646896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?
    Chen HX; Otmakhov N; Strack S; Colbran RJ; Lisman JE
    J Neurophysiol; 2001 Apr; 85(4):1368-76. PubMed ID: 11287461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation.
    Nicoll RA; Malenka RC
    Ann N Y Acad Sci; 1999 Apr; 868():515-25. PubMed ID: 10414328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient removal of extracellular Mg(2+) elicits persistent suppression of LTP at hippocampal CA1 synapses via PKC activation.
    Hsu KS; Ho WC; Huang CC; Tsai JJ
    J Neurophysiol; 2000 Sep; 84(3):1279-88. PubMed ID: 10980002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.