BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 1327783)

  • 41. Molecular basis for resistance to antimycin and diuron, Q-cycle inhibitors acting at the Qi site in the mitochondrial ubiquinol-cytochrome c reductase in Saccharomyces cerevisiae.
    di Rago JP; Colson AM
    J Biol Chem; 1988 Sep; 263(25):12564-70. PubMed ID: 2842335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural factors of antimycin A molecule required for inhibitory action.
    Tokutake N; Miyoshi H; Satoh T; Hatano T; Iwamura H
    Biochim Biophys Acta; 1994 May; 1185(3):271-8. PubMed ID: 8180232
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Many combinations of amino acid sequences in a conserved region of the D1 protein satisfy photosystem II function.
    Kless H; Vermaas W
    J Mol Biol; 1995 Feb; 246(1):120-31. PubMed ID: 7853392
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions.
    Bukhov NG; Sridharan G; Egorova EA; Carpentier R
    Biochim Biophys Acta; 2003 Jun; 1604(2):115-23. PubMed ID: 12765768
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protonmotive pathways and mechanisms in the cytochrome bc1 complex.
    Hunte C; Palsdottir H; Trumpower BL
    FEBS Lett; 2003 Jun; 545(1):39-46. PubMed ID: 12788490
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quinolones and their N-oxides as inhibitors of photosystem II and the cytochrome b(6)/f-complex.
    Reil E; Höfle G; Draber W; Oettmeier W
    Biochim Biophys Acta; 2001 Aug; 1506(2):127-32. PubMed ID: 11522254
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones.
    Ohshima M; Miyoshi H; Sakamoto K; Takegami K; Iwata J; Kuwabara K; Iwamura H; Yagi T
    Biochemistry; 1998 May; 37(18):6436-45. PubMed ID: 9572861
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A motif for quinone binding sites in respiratory and photosynthetic systems.
    Fisher N; Rich PR
    J Mol Biol; 2000 Mar; 296(4):1153-62. PubMed ID: 10686111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool.
    Marres CA; de Vries S
    Biochim Biophys Acta; 1991 Mar; 1057(1):51-63. PubMed ID: 1849003
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.
    Taguchi AT; O'Malley PJ; Wraight CA; Dikanov SA
    Biochemistry; 2013 Jul; 52(27):4648-55. PubMed ID: 23745576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redox potentials of ubiquinone, menaquinone, phylloquinone, and plastoquinone in aqueous solution.
    Kishi S; Saito K; Kato Y; Ishikita H
    Photosynth Res; 2017 Nov; 134(2):193-200. PubMed ID: 28831654
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural basis of functions of the mitochondrial cytochrome bc1 complex.
    Yu CA; Xia D; Kim H; Deisenhofer J; Zhang L; Kachurin AM; Yu L
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):151-8. PubMed ID: 9693733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of QA site redox cofactor structure on equilibrium binding, in situ electrochemistry, and electron-transfer performance in the photosynthetic reaction center protein.
    Warncke K; Dutton PL
    Biochemistry; 1993 May; 32(18):4769-79. PubMed ID: 8490022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors.
    Crofts AR; Barquera B; Gennis RB; Kuras R; Guergova-Kuras M; Berry EA
    Biochemistry; 1999 Nov; 38(48):15807-26. PubMed ID: 10625446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Observations concerning the quinol oxidation site of the cytochrome bc1 complex.
    Berry EA; Huang LS
    FEBS Lett; 2003 Nov; 555(1):13-20. PubMed ID: 14630312
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of amino acid residues involved in structural and ubiquinone-binding functions of subunit IV of the cytochrome bc1 complex from Rhodobacter sphaeroides.
    Chen YR; Shenoy SK; Yu CA; Yu L
    J Biol Chem; 1995 May; 270(19):11496-501. PubMed ID: 7744789
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites.
    Ohad N; Hirschberg J
    Plant Cell; 1992 Mar; 4(3):273-82. PubMed ID: 1498597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chlorophyll fluorescence measurements to assess the competition of substituted anthraquinones for the QB binding site.
    Karukstis KK; Berliner MA; Jewell CJ; Kuwata KT
    Biochim Biophys Acta; 1990 Nov; 1020(2):163-8. PubMed ID: 2245206
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 2-Nitrosofluorene and N-hydroxy-2-aminofluorene react with the ubiquinone-reduction center (center N) of the mitochondrial cytochrome bc1 complex.
    Klöhn PC; Brandt U; Neumann HG
    FEBS Lett; 1996 Jul; 389(3):233-7. PubMed ID: 8766706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.