These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1327871)

  • 1. Does biocatalysis involve inhomogeneous kinetics?
    Demchenko AP
    FEBS Lett; 1992 Oct; 310(3):211-5. PubMed ID: 1327871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transition from inhomogeneous to homogeneous kinetics in CO binding to myoglobin.
    Agmon N; Doster W; Post F
    Biophys J; 1994 May; 66(5):1612-22. PubMed ID: 8061210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are there dynamical effects in enzyme catalysis? Some thoughts concerning the enzymatic chemical step.
    Tuñón I; Laage D; Hynes JT
    Arch Biochem Biophys; 2015 Sep; 582():42-55. PubMed ID: 26087289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient oxidation as a mechanistic strategy in enzymatic catalysis.
    Tanner ME
    Curr Opin Chem Biol; 2008 Oct; 12(5):532-8. PubMed ID: 18625333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taking Ockham's razor to enzyme dynamics and catalysis.
    Glowacki DR; Harvey JN; Mulholland AJ
    Nat Chem; 2012 Jan; 4(3):169-76. PubMed ID: 22354430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel thermodynamic relationship based on Kramers Theory for studying enzyme kinetics under high viscosity.
    Siddiqui KS; Bokhari SA; Afzal AJ; Singh S
    IUBMB Life; 2004 Jul; 56(7):403-7. PubMed ID: 15545217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model reaction assesses contribution of H-tunneling and coupled motions to enzyme catalysis.
    Liu Q; Zhao Y; Hammann B; Eilers J; Lu Y; Kohen A
    J Org Chem; 2012 Aug; 77(16):6825-33. PubMed ID: 22834675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How enzymes work: analysis by modern rate theory and computer simulations.
    Garcia-Viloca M; Gao J; Karplus M; Truhlar DG
    Science; 2004 Jan; 303(5655):186-95. PubMed ID: 14716003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein dynamics and enzyme catalysis: the ghost in the machine?
    Glowacki DR; Harvey JN; Mulholland AJ
    Biochem Soc Trans; 2012 Jun; 40(3):515-21. PubMed ID: 22616861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed quantum mechanical/molecular mechanical simulations of chemical reactions in solution and in enzymes by the classical trajectory mapping approach.
    Pan JJ; Hwang JK
    Pac Symp Biocomput; 1996; ():539-49. PubMed ID: 9390257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.
    Postnikova GB; Shekhovtsova EA
    Biochemistry (Mosc); 2016 Dec; 81(13):1735-1753. PubMed ID: 28260494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational-relaxation models of single-enzyme kinetics.
    Lerch HP; Mikhailov AS; Hess B
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15410-5. PubMed ID: 12429859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of kinetic isotope effect analyses to elucidate ribonuclease mechanism.
    Harris ME; Piccirilli JA; York DM
    Biochim Biophys Acta; 2015 Nov; 1854(11):1801-8. PubMed ID: 25936517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum catalysis in enzymes: beyond the transition state theory paradigm. A Discussion Meeting held at the Royal Society on 14 and 15 November 2005.
    Scrutton NS; Sutcliffe MJ; Leslie Dutton P
    J R Soc Interface; 2006 Jun; 3(8):465-9. PubMed ID: 16849275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites.
    Bellezza F; Cipiciani A; Latterini L; Posati T; Sassi P
    Langmuir; 2009 Sep; 25(18):10918-24. PubMed ID: 19735144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic catalysis and transition-state theory.
    Lienhard GE
    Science; 1973 Apr; 180(4082):149-54. PubMed ID: 4632837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient phase kinetics of enzymes reactions where more than one species of enzyme is present at the start of the reaction.
    Darvey IG
    J Theor Biol; 1977 Apr; 65(3):465-78. PubMed ID: 859342
    [No Abstract]   [Full Text] [Related]  

  • 19. Transition-state ensemble in enzyme catalysis: possibility, reality, or necessity?
    Ma B; Kumar S; Tsai CJ; Hu Z; Nussinov R
    J Theor Biol; 2000 Apr; 203(4):383-97. PubMed ID: 10736215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Zn2+ binding and enzyme active site on the transition state for RNA 2'-O-transphosphorylation interpreted through kinetic isotope effects.
    Chen H; Piccirilli JA; Harris ME; York DM
    Biochim Biophys Acta; 2015 Nov; 1854(11):1795-800. PubMed ID: 25812974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.