These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 1327954)

  • 1. De novo glucan synthesis by mutants streptococcal glucosyltransferases present in pellicle promotes firm binding of Streptococcus gordonii to tooth surfaces.
    Hiroi T; Fukushima K; Kantake I; Namiki Y; Ikeda T
    FEMS Microbiol Lett; 1992 Sep; 75(2-3):193-8. PubMed ID: 1327954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose-dependent accumulation of oral streptococci and their adhesion-defective mutants on saliva-coated hydroxyapatite.
    Vickerman MM; Jones GW
    Oral Microbiol Immunol; 1995 Jun; 10(3):175-82. PubMed ID: 7567067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite.
    Vacca-Smith AM; Venkitaraman AR; Quivey RG; Bowen WH
    Arch Oral Biol; 1996 Mar; 41(3):291-8. PubMed ID: 8735015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans.
    Schilling KM; Bowen WH
    Infect Immun; 1992 Jan; 60(1):284-95. PubMed ID: 1530843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-contact removal of coadhering and non-coadhering bacterial pairs from pellicle surfaces by sonic brushing and de novo adhesion.
    Busscher HJ; Rustema-Abbing M; Bruinsma GM; de Jager M; Gottenbos B; van der Mei HC
    Eur J Oral Sci; 2003 Dec; 111(6):459-64. PubMed ID: 14632680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of glucosyltransferaseB, GtfC, and GtfD in solution and on the surface of hydroxyapatite.
    Venkitaraman AR; Vacca-Smith AM; Kopec LK; Bowen WH
    J Dent Res; 1995 Oct; 74(10):1695-701. PubMed ID: 7499593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental salivary pellicles formed on titanium surfaces mediate adhesion of streptococci.
    Edgerton M; Lo SE; Scannapieco FA
    Int J Oral Maxillofac Implants; 1996; 11(4):443-9. PubMed ID: 8803339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion of actinomyces isolates to experimental pellicles.
    Steinberg D; Kopec LK; Bowen WH
    J Dent Res; 1993 Jun; 72(6):1015-20. PubMed ID: 8496474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saliva mediated adherence, aggregation and prevalence in dental plaque of Streptococcus mutans, Streptococcus sanguis and Actinomyces spp, in young and elderly humans.
    Carlén A; Olsson J; Ramberg P
    Arch Oral Biol; 1996 Dec; 41(12):1133-40. PubMed ID: 9134102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of glucosyltransferase to saliva coated hydroxyapatite. Possible mechanism for sucrose dependent bacterial colonization of teeth.
    Rŏlla G; Ciardi JE; Schultz SA
    Scand J Dent Res; 1983 Apr; 91(2):112-7. PubMed ID: 6304864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucosyltransferase phase variation in Streptococcus gordonii modifies adhesion to saliva-coated hydroxyapatite surfaces in a sucrose-independent manner.
    Vickerman MM; Clewell DB; Jones GW
    Oral Microbiol Immunol; 1992 Apr; 7(2):118-20. PubMed ID: 1388259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibiting effect of aqueous Azadirachta indica (Neem) extract upon bacterial properties influencing in vitro plaque formation.
    Wolinsky LE; Mania S; Nachnani S; Ling S
    J Dent Res; 1996 Feb; 75(2):816-22. PubMed ID: 8655780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salivary amylase promotes adhesion of oral streptococci to hydroxyapatite.
    Scannapieco FA; Torres GI; Levine MJ
    J Dent Res; 1995 Jul; 74(7):1360-6. PubMed ID: 7560386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strains of Streptococcus mutans and Streptococcus sobrinus attach to different pellicle receptors.
    Gibbons RJ; Cohen L; Hay DI
    Infect Immun; 1986 May; 52(2):555-61. PubMed ID: 2422126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Initial-plaque forming ability of glucosyltransferases from Streptococcus mutans serotype C strain].
    Hiroi T
    Nichidai Koko Kagaku; 1990 Jun; 16(2):196-211. PubMed ID: 2135610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sialic acid in the kinetics of Streptococcus sanguis adhesion to artificial pellicle.
    Cowan MM; Taylor KG; Doyle RJ
    Infect Immun; 1987 Jul; 55(7):1552-7. PubMed ID: 3596799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adherence of microorganisms to rat salivary pellicles.
    Kopec LK; Bowen WH
    Caries Res; 1995; 29(6):507-12. PubMed ID: 8556756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for the association of glucosyltransferases with the cell surface of oral streptococci.
    Kato C; Kuramitsu HK
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):153-7. PubMed ID: 1829422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies concerning the glucosyltransferase of Streptococcus sanguis.
    Vacca Smith AM; Ng-Evans L; Wunder D; Bowen WH
    Caries Res; 2000; 34(4):295-302. PubMed ID: 10867431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation.
    Tamesada M; Kawabata S; Fujiwara T; Hamada S
    J Dent Res; 2004 Nov; 83(11):874-9. PubMed ID: 15505239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.