BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1327955)

  • 1. The mechanism of inhibition by EDTA and EGTA of methanol oxidation by methylotrophic bacteria.
    Chan HT; Anthony C
    FEMS Microbiol Lett; 1992 Sep; 75(2-3):231-4. PubMed ID: 1327955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of methanol dehydrogenase and its cytochrome electron acceptor.
    Dales SL; Anthony C
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):261-5. PubMed ID: 7492322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of methanol dehydrogenase and its electron acceptor, cytochrome cL in methylotrophic bacteria.
    Cox JM; Day DJ; Anthony C
    Biochim Biophys Acta; 1992 Feb; 1119(1):97-106. PubMed ID: 1311606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence of electron carriers in the process of methanol oxidation by a new obligate methylotrophic bacterium.
    Yang SS; Lee JS; Kim YM; Kim SW
    Biochem Mol Biol Int; 1998 Nov; 46(4):807-19. PubMed ID: 9844742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of EDTA and related chelating agents on the oxidation of methanol by the methylotrophic bacterium, Methylophilus methylotrophus.
    Carver MA; Humphrey KM; Patchett RA; Jones CW
    Eur J Biochem; 1984 Feb; 138(3):611-5. PubMed ID: 6420156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on electron transfer from methanol dehydrogenase to cytochrome cL, both purified from Hyphomicrobium X.
    Dijkstra M; Frank J; Duine JA
    Biochem J; 1989 Jan; 257(1):87-94. PubMed ID: 2537627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The interaction of methanol dehydrogenase and cytochrome cL in the acidophilic methylotroph Acetobacter methanolicus.
    Chan HT; Anthony C
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):139-46. PubMed ID: 1660263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The soluble cytochromes c of methanol-grown Hyphomicrobium X. Evidence against the involvement of autoreduction in electron-acceptor functioning of cytochrome cL.
    Dijkstra M; Frank J; van Wielink JE; Duine JA
    Biochem J; 1988 Apr; 251(2):467-74. PubMed ID: 2840895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of ammonia activation and ammonium ion inhibition of quinoprotein methanol dehydrogenase: a computational approach.
    Reddy SY; Bruice TC
    Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15887-92. PubMed ID: 15520392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal Structure of Cytochrome
    Ghosh S; Dhanasingh I; Ryu J; Kim SW; Lee SH
    J Microbiol Biotechnol; 2020 Aug; 30(8):1261-1271. PubMed ID: 32627749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The methanol-oxidizing system of Methylobacterium extorquens AM1 reconstituted with purified constituents.
    Mukai K; Fukumori Y; Yamanaka T
    J Biochem; 1990 May; 107(5):714-7. PubMed ID: 2168871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quaternary structure of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa and its reoxidation with a novel cytochrome c from this organism.
    Schrover JM; Frank J; van Wielink JE; Duine JA
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):123-7. PubMed ID: 8382472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the novel disulphide ring in the active site of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens.
    Avezoux A; Goodwin MG; Anthony C
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):735-41. PubMed ID: 7741704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MxaJ structure reveals a periplasmic binding protein-like architecture with unique secondary structural elements.
    Myung Choi J; Cao TP; Wouk Kim S; Ho Lee K; Haeng Lee S
    Proteins; 2017 Jul; 85(7):1379-1386. PubMed ID: 28295618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis and X-ray crystallography of the PQQ-containing quinoprotein methanol dehydrogenase and its electron acceptor, cytochrome c(L).
    Afolabi PR; Mohammed F; Amaratunga K; Majekodunmi O; Dales SL; Gill R; Thompson D; Cooper JB; Wood SP; Goodwin PM; Anthony C
    Biochemistry; 2001 Aug; 40(33):9799-809. PubMed ID: 11502173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative enzyme inhibitive methanol production by Methylosinus sporium from simulated biogas.
    Yoo YS; Han JS; Ahn CM; Kim CG
    Environ Technol; 2015; 36(5-8):983-91. PubMed ID: 25267420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil.
    Han JS; Ahn CM; Mahanty B; Kim CG
    Appl Biochem Biotechnol; 2013 Nov; 171(6):1487-99. PubMed ID: 23963715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the MxaD protein in the respiratory chain of Methylobacterium extorquens during growth on methanol.
    Toyama H; Inagaki H; Matsushita K; Anthony C; Adachi O
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):372-5. PubMed ID: 12686160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of multiple ligand binding on kinetic isotope effects in PQQ-dependent methanol dehydrogenase.
    Hothi P; Basran J; Sutcliffe MJ; Scrutton NS
    Biochemistry; 2003 Apr; 42(13):3966-78. PubMed ID: 12667088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The preferred reaction path for the oxidation of methanol by PQQ-containing methanol dehydrogenase: addition-elimination versus hydride-transfer mechanism.
    Leopoldini M; Russo N; Toscano M
    Chemistry; 2007; 13(7):2109-17. PubMed ID: 17149777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.