BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 1328176)

  • 1. Structural features of cation transport ATPases.
    Inesi G; Kirtley MR
    J Bioenerg Biomembr; 1992 Jun; 24(3):271-83. PubMed ID: 1328176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATPase gene transfer and mutational analysis of the cation translocation mechanism.
    Inesi G; Lewis D; Sumbilla C; Nandi A; Kirtley M; Ordahl CP
    Ann N Y Acad Sci; 1997 Nov; 834():207-20. PubMed ID: 9405809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mammalian phosphorylating ion-motive ATPases.
    Sachs G; Munson K
    Curr Opin Cell Biol; 1991 Aug; 3(4):685-94. PubMed ID: 1722984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology modeling of the cation binding sites of Na+K+-ATPase.
    Ogawa H; Toyoshima C
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):15977-82. PubMed ID: 12461183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ binding and translocation by the sarcoplasmic reticulum ATPase: functional and structural considerations.
    Inesi G; Chen L; Sumbilla C; Lewis D; Kirtley ME
    Biosci Rep; 1995 Oct; 15(5):327-39. PubMed ID: 8825035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transduction and kinetic regulation by the peptide segment connecting phosphorylation and cation binding domains in transport ATPases.
    Garnett C; Sumbilla C; Belda FF; Chen L; Inesi G
    Biochemistry; 1996 Aug; 35(34):11019-25. PubMed ID: 8780503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P-type ATPases. Introduction.
    Carafoli E
    J Bioenerg Biomembr; 1992 Jun; 24(3):245-7. PubMed ID: 1328173
    [No Abstract]   [Full Text] [Related]  

  • 8. Functional consequences of mutations in the transmembrane core region for cation translocation and energy transduction in the Na+,K(+)-ATPase and the SR Ca(2+)-ATPase.
    Vilsen B; Ramlov D; Andersen JP
    Ann N Y Acad Sci; 1997 Nov; 834():297-309. PubMed ID: 9405816
    [No Abstract]   [Full Text] [Related]  

  • 9. Comparison of H+-ATPase and Ca2+-ATPase suggests that a large conformational change initiates P-type ion pump reaction cycles.
    Stokes DL; Auer M; Zhang P; Kühlbrandt W
    Curr Biol; 1999 Jul; 9(13):672-9. PubMed ID: 10395538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of proton pumping by plant plasma membrane H+-ATPase: role of residues in transmembrane segments 5 and 6.
    Palmgren MG; Buch-Pedersen MJ; Møller AL
    Ann N Y Acad Sci; 2003 Apr; 986():188-97. PubMed ID: 12763795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of the peptide segment linking phosphorylation and Ca(2+)-binding domains in the sarcoplasmic reticulum Ca(2+)-ATPase.
    Zhang Z; Sumbilla C; Lewis D; Summers S; Klein MG; Inesi G
    J Biol Chem; 1995 Jul; 270(27):16283-90. PubMed ID: 7608196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+,K+- and other cation transport ATPases.
    Shull GE; Greeb J
    J Biol Chem; 1988 Jun; 263(18):8646-57. PubMed ID: 2837461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E1/E2 type cation transport ATPases: evidence for transient associations between protomers.
    Boldyrev AA; Quinn PJ
    Int J Biochem; 1994 Dec; 26(12):1323-31. PubMed ID: 7890111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural similarities of Na,K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum.
    Sweadner KJ; Donnet C
    Biochem J; 2001 Jun; 356(Pt 3):685-704. PubMed ID: 11389677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling a dehalogenase fold into the 8-A density map for Ca(2+)-ATPase defines a new domain structure.
    Stokes DL; Green NM
    Biophys J; 2000 Apr; 78(4):1765-76. PubMed ID: 10733958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conformation of H,K-ATPase determines the nucleoside triphosphate (NTP) selectivity for active proton transport.
    Reenstra WW; Crothers J; Forte JG
    Biochemistry; 2007 Sep; 46(35):10145-52. PubMed ID: 17696364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the three-dimensional structure of H+-ATPase of Neurospora crassa.
    Radresa O; Ogata K; Wodak S; Ruysschaert JM; Goormaghtigh E
    Eur J Biochem; 2002 Nov; 269(21):5246-58. PubMed ID: 12392557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of Zn2+-transporting P-type ATPases.
    Wang K; Sitsel O; Meloni G; Autzen HE; Andersson M; Klymchuk T; Nielsen AM; Rees DC; Nissen P; Gourdon P
    Nature; 2014 Oct; 514(7523):518-22. PubMed ID: 25132545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity.
    Ishii T; Hata F; Lemas MV; Fambrough DM; Takeyasu K
    Biochemistry; 1997 Jan; 36(2):442-51. PubMed ID: 9003197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alignment of 17 deduced protein sequences from plant, fungi, and ciliate H(+)-ATPase genes.
    Wach A; Schlesser A; Goffeau A
    J Bioenerg Biomembr; 1992 Jun; 24(3):309-17. PubMed ID: 1328178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.