BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 1328176)

  • 21. Molecular mechanism of the P-type ATPases.
    Scarborough GA
    J Bioenerg Biomembr; 2002 Aug; 34(4):235-50. PubMed ID: 12392187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular signaling through long-range linked functions in the Ca2+ transport ATPase.
    Inesi G; Zhang Z; Sagara Y; Kirtley ME
    Biophys Chem; 1994 May; 50(1-2):129-38. PubMed ID: 8011927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homology modeling of Na,K-ATPase: a putative third sodium binding site suggests a relay mechanism compatible with the electrogenic profile of Na+ translocation.
    Håkansson KO; Jorgensen PL
    Ann N Y Acad Sci; 2003 Apr; 986():163-7. PubMed ID: 12763791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure of the P-type ATPases.
    Kühlbrandt W; Auer M; Scarborough GA
    Curr Opin Struct Biol; 1998 Aug; 8(4):510-6. PubMed ID: 9729744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the calcium pump from sarcoplasmic reticulum at 8-A resolution.
    Zhang P; Toyoshima C; Yonekura K; Green NM; Stokes DL
    Nature; 1998 Apr; 392(6678):835-9. PubMed ID: 9572145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteolytic studies on the transduction mechanism of sarcoplasmic reticulum Ca2+-ATPase: common features with other P-type ATPases.
    Møller JV; Lenoir G; Le Maire M; Juul BS; Champeil P
    Ann N Y Acad Sci; 2003 Apr; 986():82-9. PubMed ID: 12763778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of phosphoryl group transfer.
    Faller LD; Nagy AK; Kane DJ; Farley RA
    Ann N Y Acad Sci; 2003 Apr; 986():275-7. PubMed ID: 12763820
    [No Abstract]   [Full Text] [Related]  

  • 28. Homology of ATP binding sites from Ca2+ and (Na,K)-ATPases: comparison of the amino acid sequences of fluorescein isothiocyanate labeled peptides.
    Kirley TL; Wang T; Wallick ET; Lane LK
    Biochem Biophys Res Commun; 1985 Jul; 130(2):732-8. PubMed ID: 2992483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of transmembrane segment M1 of Na+,K+-ATPase and Ca2-ATPase, the gatekeeper and the pivot.
    Einholm AP; Andersen JP; Vilsen B
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):357-66. PubMed ID: 18058007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional analyses of PpENA1 provide insights into cation binding by type IID P-type ATPases in lower plants and fungi.
    Drew DP; Hrmova M; Lunde C; Jacobs AK; Tester M; Fincher GB
    Biochim Biophys Acta; 2011 Jun; 1808(6):1483-92. PubMed ID: 21081109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of the epsilon subunit of the proton-translocating ATP synthase from Escherichia coli.
    Uhlin U; Cox GB; Guss JM
    Structure; 1997 Sep; 5(9):1219-30. PubMed ID: 9331422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion-sensitive domains of the SERCA- and the Na+/K(+)-ATPases identified by chimeric recombination.
    Yoshimura SH; Ishii T; Yasuhara JC; Sato MH; Takeyasu K
    Ann N Y Acad Sci; 1997 Nov; 834():588-91. PubMed ID: 9432923
    [No Abstract]   [Full Text] [Related]  

  • 33. Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum.
    Toyoshima C; Inesi G
    Annu Rev Biochem; 2004; 73():269-92. PubMed ID: 15189143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational transitions in the function of cation transport ATPases.
    Quinn PJ
    Biochem Soc Trans; 1994 Aug; 22(3):830-8. PubMed ID: 7821696
    [No Abstract]   [Full Text] [Related]  

  • 35. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence.
    MacLennan DH; Brandl CJ; Korczak B; Green NM
    Nature; 1985 Aug 22-28; 316(6030):696-700. PubMed ID: 2993904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. P-type ATPase diversity and evolution: the origins of ouabain sensitivity and subunit assembly.
    Takeyasu K; Okamura H; Yasuhara JC; Ogita Y; Yoshimura SH
    Cell Mol Biol (Noisy-le-grand); 2001 Mar; 47(2):325-33. PubMed ID: 11355008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular dissection of functional domains of the E1E2-ATPase using sodium and calcium pump chimeric molecules.
    Luckie DB; Lemas V; Boyd KL; Fambrough DM; Takeyasu K
    Biophys J; 1992 Apr; 62(1):220-6; discussion 226-7. PubMed ID: 1318102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chimeric Ca(2+)-ATPase/Na+,K(+)-ATPase molecules. Their phosphoenzyme intermediates and sensitivity to Ca2+ and thapsigargin.
    Nørregaard A; Vilsen B; Andersen JP
    FEBS Lett; 1993 Dec; 336(2):248-54. PubMed ID: 8262239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis.
    Zvaritch E; James P; Vorherr T; Falchetto R; Modyanov N; Carafoli E
    Biochemistry; 1990 Sep; 29(35):8070-6. PubMed ID: 2175646
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in the susceptibility of various cation transport ATPases to vanadate-catalyzed photocleavage.
    Molnar E; Varga S; Martonosi A
    Biochim Biophys Acta; 1991 Sep; 1068(1):17-26. PubMed ID: 1654103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.