These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 132841)

  • 1. Adaptive changes in cardiolipin content of Staphylococcus aureus grown in different salt concentrations.
    Takatsu T
    Acta Med Okayama; 1975 Dec; 29(6):413-20. PubMed ID: 132841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The salt-resistance mechanism of Staphylococcus aureus examined by salt-sensitive mutants.
    Kanemasa Y; Takatsu T; Sasai K; Kojima I; Hayashi H
    Acta Med Okayama; 1976 Aug; 30(4):271-6. PubMed ID: 137654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of sodium chloride on Escherichia coli O157:H7 and Staphylococcus aureus analysed using transmission electron microscopy.
    Hajmeer M; Ceylan E; Marsden JL; Fung DY
    Food Microbiol; 2006 Aug; 23(5):446-52. PubMed ID: 16943036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy dependency on the salt-resistance of Staphylococcus aureus: Effects of various inhibitors on the growth in high salinity condition.
    Tomochika K
    Acta Med Okayama; 1975 Jun; 29(3):171-82. PubMed ID: 127511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytologic and genetic features of mammalian cultured cells adapted to hypertonic medium.
    Fuhrman Conti AM
    Basic Appl Histochem; 1979; 23 Suppl():51-7. PubMed ID: 553505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptational changes in Staphylococcus aureus MF 31 grown above its maximum growth temperature when protected by sodium chloride: lipid studies.
    Hurst A; Ofori E; Vishnubhatla I; Kates M
    Can J Microbiol; 1984 Nov; 30(11):1424-7. PubMed ID: 6518423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of biosynthesis of metalloprotease of Aeromonas sobria by sodium chloride in the medium.
    Takahashi E; Kobayashi H; Yamanaka H; Nair GB; Takeda Y; Arimoto S; Negishi T; Okamoto K
    Microbiol Immunol; 2011 Jan; 55(1):60-5. PubMed ID: 21175775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcus aureus produces autolysin-susceptible cell walls during growth in a high-NaCl and low-Ca2+ concentration medium.
    Ochiai T
    Microbiol Immunol; 2000; 44(2):97-104. PubMed ID: 10803496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mouse preimplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression.
    Ho Y; Doherty AS; Schultz RM
    Mol Reprod Dev; 1994 Jun; 38(2):131-41. PubMed ID: 7521650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Expression of staphylococci resistance to oxacillin and cefalotin ].
    Reynaud A; Drugeon HB; Chung SS; Courtieu AL
    Pathol Biol (Paris); 1982 Jun; 30(6 Pt 2):489-94. PubMed ID: 6750519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of methicillin on the phospholipid content of methicillin sensitive Staphylococcus aureus.
    Rozgonyi F; Kiss J; Jékel P; Váczi L
    Acta Microbiol Acad Sci Hung; 1980; 27(1):31-40. PubMed ID: 7415870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Staphylococcus aureus requires increased level of Ca(2+) or Mn(2+) to grow normally in a high-NaCl/low-Mg(2+) medium.
    Ochiai T
    Microbiol Immunol; 2001; 45(11):769-76. PubMed ID: 11791670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptational change in proline and water content of Staphylococcus aureus after alteration of environmental salt concentration.
    Koujima I; Hayashi H; Tomochika K; Okabe A; Kanemasa Y
    Appl Environ Microbiol; 1978 Mar; 35(3):467-70. PubMed ID: 637544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration in phospholipid composition of Staphylococcus aureus during formation of autoplast.
    Okabe A; Hirai Y; Hayashi H; Kanemasa Y
    Biochim Biophys Acta; 1980 Jan; 617(1):28-35. PubMed ID: 7353022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of predictive mathematical model for the growth kinetics of Staphylococcus aureus by response surface model.
    Seo KY; Heo SK; Lee C; Chung DH; Kim MG; Lee KH; Kim KS; Bahk GJ; Bae DH; Kim KY; Kims CH; Ha SD
    J Microbiol Biotechnol; 2007 Sep; 17(9):1437-44. PubMed ID: 18062220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of NaCl on the growth and morphology of Saccharomycopsis fibuligera.
    Ota A; Morishita H
    Microbios; 1993; 73(295):149-55. PubMed ID: 8459782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staphylococcus aureus requires cardiolipin for survival under conditions of high salinity.
    Tsai M; Ohniwa RL; Kato Y; Takeshita SL; Ohta T; Saito S; Hayashi H; Morikawa K
    BMC Microbiol; 2011 Jan; 11():13. PubMed ID: 21241511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monovalent cation fluxes and physiological changes of Debaryomyces hansenii grown at high concentrations of KCl and NaCl.
    Thomé-Ortiz PE; Peña A; Ramírez J
    Yeast; 1998 Nov; 14(15):1355-71. PubMed ID: 9848228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of intracellular osmotic pressure during the initial stages of salt stress in a salt-tolerant yeast, Zygosaccharomyces rouxii.
    Yagi T
    Microbios; 1992; 70(283):93-102. PubMed ID: 1501597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-Sensitive growth of Staphylococcus aureus: stimulation of salt-induced autolysis by multiple environmental factors.
    Ochiai T
    Microbiol Immunol; 1999; 43(7):705-9. PubMed ID: 10529112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.