BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1329081)

  • 1. Probing beta-lactamase structure and function using random replacement mutagenesis.
    Palzkill T; Botstein D
    Proteins; 1992 Sep; 14(1):29-44. PubMed ID: 1329081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid sequence determinants of beta-lactamase structure and activity.
    Huang W; Petrosino J; Hirsch M; Shenkin PS; Palzkill T
    J Mol Biol; 1996 May; 258(4):688-703. PubMed ID: 8637002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the omega-loop in the activity, substrate specificity, and structure of class A beta-lactamase.
    Banerjee S; Pieper U; Kapadia G; Pannell LK; Herzberg O
    Biochemistry; 1998 Mar; 37(10):3286-96. PubMed ID: 9521648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and kinetics of the beta-lactamase mutants S70A and K73H from Staphylococcus aureus PC1.
    Chen CC; Smith TJ; Kapadia G; Wäsch S; Zawadzke LE; Coulson A; Herzberg O
    Biochemistry; 1996 Sep; 35(38):12251-8. PubMed ID: 8823158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circularly permuted beta-lactamase from Staphylococcus aureus PC1.
    Pieper U; Hayakawa K; Li Z; Herzberg O
    Biochemistry; 1997 Jul; 36(29):8767-74. PubMed ID: 9220963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis.
    Orencia MC; Yoon JS; Ness JE; Stemmer WP; Stevens RC
    Nat Struct Biol; 2001 Mar; 8(3):238-42. PubMed ID: 11224569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissemination of the CTX-M-25 family beta-lactamases among Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae and identification of the novel enzyme CTX-M-41 in Proteus mirabilis in Israel.
    Navon-Venezia S; Chmelnitsky I; Leavitt A; Carmeli Y
    J Antimicrob Chemother; 2008 Aug; 62(2):289-95. PubMed ID: 18487232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and kinetic analysis of beta-lactamase inhibitor protein-II in complex with TEM-1 beta-lactamase.
    Lim D; Park HU; De Castro L; Kang SG; Lee HS; Jensen S; Lee KJ; Strynadka NC
    Nat Struct Biol; 2001 Oct; 8(10):848-52. PubMed ID: 11573088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 beta-lactamase.
    Palzkill T; Botstein D
    J Bacteriol; 1992 Aug; 174(16):5237-43. PubMed ID: 1644749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial DNA sequence of a beta-lactamase produced by a Shigella flexneri strain.
    Echeverría V; Olate J; Cid H
    Microbios; 1995; 83(335):107-17. PubMed ID: 8538491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic, biochemical characterization and mutagenesis of the chromosomal class A β-lactamase of Raoultella (formerly Klebsiella) terrigena.
    Walckenaer E; Delmas J; Leflon-Guibout V; Bonnet R; Nicolas-Chanoine MH
    Pathol Biol (Paris); 2015 Sep; 63(4-5):158-63. PubMed ID: 26092758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase.
    Palzkill T; Le QQ; Venkatachalam KV; LaRocco M; Ocera H
    Mol Microbiol; 1994 Apr; 12(2):217-29. PubMed ID: 8057847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active TEM-1 beta-lactamase mutants with random peptides inserted in three contiguous surface loops.
    Mathonet P; Deherve J; Soumillion P; Fastrez J
    Protein Sci; 2006 Oct; 15(10):2323-34. PubMed ID: 16963643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of beta-lactamase to core amino acid substitutions.
    Petrosino JF; Baker M; Palzkill T
    Protein Eng; 1999 Sep; 12(9):761-9. PubMed ID: 10506286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping catalytically important regions of an enzyme using two-codon insertion mutagenesis: a case study correlating beta-lactamase mutants with the three-dimensional structure.
    Zebala J; Barany F
    Gene; 1991 Apr; 100():51-7. PubMed ID: 2055479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.
    Mathieu V; Fastrez J; Soumillion P
    Protein Eng Des Sel; 2010 Sep; 23(9):699-709. PubMed ID: 20591901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection.
    Materon IC; Palzkill T
    Protein Sci; 2001 Dec; 10(12):2556-65. PubMed ID: 11714924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutants generated by the insertion of random oligonucleotides into the active site of the beta-lactamase gene.
    Dube DK; Loeb LA
    Biochemistry; 1989 Jul; 28(14):5703-7. PubMed ID: 2789078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.