BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 1329109)

  • 1. RNA binding determinant in some class I tRNA synthetases identified by alignment-guided mutagenesis.
    Shepard A; Shiba K; Schimmel P
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9964-8. PubMed ID: 1329109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching recognition of two tRNA synthetases with an amino acid swap in a designed peptide.
    Auld DS; Schimmel P
    Science; 1995 Mar; 267(5206):1994-6. PubMed ID: 7701322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of the yeast tRNA(Met) anticodon by the cognate methionyl-tRNA synthetase involves at least two independent peptide regions.
    Despons L; Senger B; Fasiolo F; Walter P
    J Mol Biol; 1992 Jun; 225(3):897-907. PubMed ID: 1602489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C-terminal peptide appendix in a class I tRNA synthetase needed for acceptor-helix contacts and microhelix aminoacylation.
    Kim S; Landro JA; Gale AJ; Schimmel P
    Biochemistry; 1993 Dec; 32(48):13026-31. PubMed ID: 8241156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA.
    Kim HY; Pelka H; Brunie S; Schulman LH
    Biochemistry; 1993 Oct; 32(39):10506-11. PubMed ID: 8399196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of methionine by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH; Brunie S
    Biochemistry; 1991 Oct; 30(40):9569-75. PubMed ID: 1911742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to tRNA acceptor stem structure by flexible adjustment in the catalytic domain of class I tRNA synthetases.
    Liu C; Sanders JM; Pascal JM; Hou YM
    RNA; 2012 Feb; 18(2):213-21. PubMed ID: 22184460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition state stabilization by a phylogenetically conserved tyrosine residue in methionyl-tRNA synthetase.
    Ghosh G; Brunie S; Schulman LH
    J Biol Chem; 1991 Sep; 266(26):17136-41. PubMed ID: 1654323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
    Senger B; Despons L; Walter P; Jakubowski H; Fasiolo F
    J Mol Biol; 2001 Aug; 311(1):205-16. PubMed ID: 11469869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site.
    Casina VC; Lobashevsky AA; McKinney WE; Brown CL; Alexander RW
    Biochemistry; 2011 Feb; 50(5):763-9. PubMed ID: 21175197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.
    Burbaum JJ; Schimmel P
    Protein Sci; 1992 May; 1(5):575-81. PubMed ID: 1304356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in MARS identified in a specific type of pulmonary alveolar proteinosis alter methionyl-tRNA synthetase activity.
    Comisso M; Hadchouel A; de Blic J; Mirande M
    FEBS J; 2018 Jul; 285(14):2654-2661. PubMed ID: 29775242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional structure of methionyl-tRNA synthetase from Pyrococcus abyssi.
    Crepin T; Schmitt E; Blanquet S; Mechulam Y
    Biochemistry; 2004 Mar; 43(9):2635-44. PubMed ID: 14992601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 2.0 A crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules.
    Sugiura I; Nureki O; Ugaji-Yoshikawa Y; Kuwabara S; Shimada A; Tateno M; Lorber B; Giegé R; Moras D; Yokoyama S; Konno M
    Structure; 2000 Feb; 8(2):197-208. PubMed ID: 10673435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single sequence of a helix-loop peptide confers functional anticodon recognition on two tRNA synthetases.
    Auld DS; Schmimmel P
    EMBO J; 1996 Mar; 15(5):1142-8. PubMed ID: 8605884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis.
    Gale AJ; Shi JP; Schimmel P
    Biochemistry; 1996 Jan; 35(2):608-15. PubMed ID: 8555234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of methionine and formylation of initiator tRNA in initiation of protein synthesis in Escherichia coli.
    Varshney U; RajBhandary UL
    J Bacteriol; 1992 Dec; 174(23):7819-26. PubMed ID: 1447148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two acidic residues of Escherichia coli methionyl-tRNA synthetase act as negative discriminants towards the binding of non-cognate tRNA anticodons.
    Schmitt E; Meinnel T; Panvert M; Mechulam Y; Blanquet S
    J Mol Biol; 1993 Oct; 233(4):615-28. PubMed ID: 8411169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRNA recognition site of Escherichia coli methionyl-tRNA synthetase.
    Leon O; Schulman LH
    Biochemistry; 1987 Aug; 26(17):5416-22. PubMed ID: 3118944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.