These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 1329154)
1. Effect of diets containing different levels of calcium, phosphate, and vitamin D3 on tooth uptake of 47Ca-chloride in rat models: comparison with bone uptake. Seto H; Ihara F; Shimizu M; Kageyama M; Futatsuya R; Kakishita M Radiat Med; 1992; 10(4):131-4. PubMed ID: 1329154 [TBL] [Abstract][Full Text] [Related]
2. Twenty-four-hour whole-body retention of 47Ca-chloride: an index of global bone metabolism in rat models. Seto H; Ihara F; Kakishita M Int J Rad Appl Instrum B; 1989; 16(8):799-804. PubMed ID: 2621115 [TBL] [Abstract][Full Text] [Related]
3. [Quantitative assessment of metabolic bone disease in rat models by dual tracer method]. Ihara F; Seto H Nihon Igaku Hoshasen Gakkai Zasshi; 1989 May; 49(5):657-66. PubMed ID: 2798057 [TBL] [Abstract][Full Text] [Related]
4. Effect of low or high dietary calcium on the morphology of the rat femur. Chen H; Hayakawa D; Emura S; Ozawa Y; Okumura T; Shoumura S Histol Histopathol; 2002 Oct; 17(4):1129-35. PubMed ID: 12371141 [TBL] [Abstract][Full Text] [Related]
5. Normophosphatemic vitamin D-resistant osteomalacia in a patient with normal calcium and fat absorption. Waron M; Stauffer M; Baylink D; Rich C Ann Intern Med; 1971 Sep; 75(3):415-9. PubMed ID: 5568153 [No Abstract] [Full Text] [Related]
6. Dietary calcium and phosphorus ratio regulates bone mineralization and turnover in vitamin D receptor knockout mice by affecting intestinal calcium and phosphorus absorption. Masuyama R; Nakaya Y; Katsumata S; Kajita Y; Uehara M; Tanaka S; Sakai A; Kato S; Nakamura T; Suzuki K J Bone Miner Res; 2003 Jul; 18(7):1217-26. PubMed ID: 12854831 [TBL] [Abstract][Full Text] [Related]
7. Uptake of technetium-99m methylene diphosphonate by fractured and osteoporotic bone after a pulse dose of vitamin D3. Carr EA; Carroll M; Montes M; Zielezny M J Nucl Med; 1985 Apr; 26(4):385-9. PubMed ID: 2984363 [TBL] [Abstract][Full Text] [Related]
8. Effect of vitamin D and low dietary calcium on lead uptake and retention in rats. Hart MH; Smith JL J Nutr; 1981 Apr; 111(4):694-8. PubMed ID: 6260915 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous measurements of twenty-four-hour whole-body retention of 47Ca-chloride and 99mTc-MDP: early differentiation of metabolic bone diseases in rat models. Seto H; Ihara F; Futatsuya R; Kamei T; Kakishita M; Noda M Nucl Med Biol; 1993 Apr; 20(3):337-42. PubMed ID: 8485493 [TBL] [Abstract][Full Text] [Related]
10. [A comparative radioisotope study of calcium metabolism in bone and teeth of rats (author's transl)]. Kutzner J; Sachs A; Grimm W Nuklearmedizin; 1978 Apr; 17(2):63-5. PubMed ID: 662702 [TBL] [Abstract][Full Text] [Related]
11. [The effect of stress on change in the mineral and amino acid metabolism in calcified rat tissue]. Zakharova ZV Patol Fiziol Eksp Ter; 1967; 11(6):59-63. PubMed ID: 5262081 [No Abstract] [Full Text] [Related]
12. A comparison of intrinsic and extrinsic tracer methods for estimating calcium bioavailability to rats from dairy foods. Buchowski MS; Sowizral KC; Lengemann FW; Van Campen D; Miller DD J Nutr; 1989 Feb; 119(2):228-34. PubMed ID: 2918396 [TBL] [Abstract][Full Text] [Related]
13. Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: an 18-month factorial design randomized controlled trial. Kukuljan S; Nowson CA; Sanders KM; Nicholson GC; Seibel MJ; Salmon J; Daly RM J Clin Endocrinol Metab; 2011 Apr; 96(4):955-63. PubMed ID: 21209030 [TBL] [Abstract][Full Text] [Related]
14. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis. Brandi L Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159 [TBL] [Abstract][Full Text] [Related]
15. Effects of Dietary Calcium Supplementation on Bone Metabolism, Kidney Mineral Concentrations, and Kidney Function in Rats Fed a High-Phosphorus Diet. Katsumata S; Matsuzaki H; Uehara M; Suzuki K J Nutr Sci Vitaminol (Tokyo); 2015; 61(2):195-200. PubMed ID: 26052152 [TBL] [Abstract][Full Text] [Related]
16. [Idiopathic hypophosphataemic osteomalacia (author's transl)]. Offermann G; von Herrath D; Delling G Dtsch Med Wochenschr; 1976 Nov; 101(46):1684-9. PubMed ID: 186246 [TBL] [Abstract][Full Text] [Related]
17. Ratio of late to early radionuclide uptake: a method for distinguishing osteoporosis from osteomalacia in animal models. Wilson JS; Genant HK; Hattner RS; Hoffer PB Radiology; 1978 Jan; 126(1):185-91. PubMed ID: 619404 [TBL] [Abstract][Full Text] [Related]
18. The role of dietary calcium in the physiology of vitamin D toxicity: excess dietary vitamin D3 blunts parathyroid hormone induction of kidney 1-hydroxylase. Beckman MJ; Johnson JA; Goff JP; Reinhardt TA; Beitz DC; Horst RL Arch Biochem Biophys; 1995 Jun; 319(2):535-9. PubMed ID: 7786039 [TBL] [Abstract][Full Text] [Related]
19. Secondary hyperparathyroidism in primary osteoporosis and osteopenia: optimizing calcium and vitamin D intakes to levels recommended by expert panels may not be sufficient for correction. Yendt ER; Kovacs KA; Jones G Clin Endocrinol (Oxf); 2008 Dec; 69(6):855-63. PubMed ID: 18419790 [TBL] [Abstract][Full Text] [Related]
20. The ClC-5 knockout mouse model of Dent's disease has renal hypercalciuria and increased bone turnover. Silva IV; Cebotaru V; Wang H; Wang XT; Wang SS; Guo G; Devuyst O; Thakker RV; Guggino WB; Guggino SE J Bone Miner Res; 2003 Apr; 18(4):615-23. PubMed ID: 12674322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]