These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1329379)

  • 1. [The structural organization and neurochemical mechanisms of the participation of the nucleus accumbens in the interaction of the limbic and motor systems and in the regulation of motor behavior].
    Shapovalova KB; Gorbachevskaia AI; Saul'skaia NB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1992; 42(2):226-76. PubMed ID: 1329379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The lateral septal nucleus: its morphological and functional organization and its role in the formation of chronorhythms].
    Zamorskiĭ II; Myslitskiĭ VF; Pishak VP
    Usp Fiziol Nauk; 1998; 29(2):68-87. PubMed ID: 9659685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input.
    Kunishio K; Haber SN
    J Comp Neurol; 1994 Dec; 350(3):337-56. PubMed ID: 7533796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The neuronal organization of the limbic (cingulo-)-visceral reflex arc].
    Baklavadzhian OG; Nersesian LB; Avetisian EA; Avetisian IN; Arshakian AV; Bagdasarian KG; Eganova VS; Pogosian NL
    Usp Fiziol Nauk; 2000; 31(4):11-23. PubMed ID: 11094794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intranasal dopamine application increases dopaminergic activity in the neostriatum and nucleus accumbens and enhances motor activity in the open field.
    de Souza Silva MA; Topic B; Huston JP; Mattern C
    Synapse; 2008 Mar; 62(3):176-84. PubMed ID: 18081176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Nucleus accumbens. Basic neurobiology and physiopathologic significance].
    Mir D; Pérez-Lucena E
    Neurologia; 1987; 2(2):63-9. PubMed ID: 3078945
    [No Abstract]   [Full Text] [Related]  

  • 7. Mesolimbic dopamine and cortico-accumbens glutamate afferents as major targets for the regulation of the ventral striato-pallidal GABA pathways by neurotensin peptides.
    Ferraro L; Tomasini MC; Fuxe K; Agnati LF; Mazza R; Tanganelli S; Antonelli T
    Brain Res Rev; 2007 Aug; 55(1):144-54. PubMed ID: 17448541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats.
    Mendoza J; Angeles-Castellanos M; Escobar C
    Behav Brain Res; 2005 Mar; 158(1):133-42. PubMed ID: 15680201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning.
    Bottjer SW; Brady JD; Cribbs B
    J Comp Neurol; 2000 May; 420(2):244-60. PubMed ID: 10753310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a multi-compartmental histochemical organization of the nucleus accumbens in the rat.
    Jongen-Rĕlo AL; Groenewegen HJ; Voorn P
    J Comp Neurol; 1993 Nov; 337(2):267-76. PubMed ID: 8277000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomy and physiology of the neostriatum.
    Kitai ST
    Adv Biochem Psychopharmacol; 1981; 30():1-21. PubMed ID: 6174034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thalamic midline cell populations projecting to the nucleus accumbens, amygdala, and hippocampus in the rat.
    Su HS; Bentivoglio M
    J Comp Neurol; 1990 Jul; 297(4):582-93. PubMed ID: 1696591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens.
    Heidbreder C; Feldon J
    Synapse; 1998 Aug; 29(4):310-22. PubMed ID: 9661249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study of the ventral striatum of the golden hamster. I. Neuronal connections of the nucleus accumbens.
    Newman R; Winans SS
    J Comp Neurol; 1980 May; 191(2):167-92. PubMed ID: 7410590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): a retro- and anterograde pathway tracing study.
    Kröner S; Güntürkün O
    J Comp Neurol; 1999 May; 407(2):228-60. PubMed ID: 10213093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional anatomy of thalamus and basal ganglia.
    Herrero MT; Barcia C; Navarro JM
    Childs Nerv Syst; 2002 Aug; 18(8):386-404. PubMed ID: 12192499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin.
    Hoogland PV; Vermeulen-Vanderzee E
    J Comp Neurol; 1989 Jul; 285(3):289-303. PubMed ID: 2760266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Neuronal correlates of the motor function of the cerebral motor cortex].
    Shul'govskiĭ VV; Sidorov BM
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1983; (1):5-14. PubMed ID: 6404310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditioning as a critical determinant of sensitization induced by psychomotor stimulants.
    Pert A; Post R; Weiss SR
    NIDA Res Monogr; 1990; 97():208-41. PubMed ID: 1978927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Possible neurophysiological and neurochemical mechanisms for participation of the striatum in initiating and regulating involuntary movement].
    Shapovalova KB
    Fiziol Zh SSSR Im I M Sechenova; 1985 May; 71(5):537-53. PubMed ID: 3894059
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.