These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 13295193)

  • 41. Anaerobic conversion of d-xylose to triose phosphate and hexose phosphate by extracts of Pseudomonas hydrophila.
    HOCHSTER RM; STONE BA
    Can J Microbiol; 1956 Apr; 2(2):132-8. PubMed ID: 13316607
    [No Abstract]   [Full Text] [Related]  

  • 42. Evidence for the de novo synthesis of the alpha-amylase of Pseudomonas saccharophila.
    EISENSTADT JM; KLEIN HP
    J Bacteriol; 1961 Dec; 82(6):798-807. PubMed ID: 13889695
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Alternative pathways of carbohydrate utilization in pseudomonads.
    Lessie TG; Phibbs PV
    Annu Rev Microbiol; 1984; 38():359-88. PubMed ID: 6388497
    [No Abstract]   [Full Text] [Related]  

  • 44. [UTILIZATION OF FRUCTOSE BY HYDROGENOMONAS H 16. (I)].
    GOTTSCHALK G; EBERHARDT U; SCHLEGEL HG
    Arch Mikrobiol; 1964 Apr; 48():95-108. PubMed ID: 14249035
    [No Abstract]   [Full Text] [Related]  

  • 45. Oxidation of a glucose polymer during exercise: comparison with glucose and fructose.
    Massicotte D; Péronnet F; Brisson G; Bakkouch K; Hillaire-Marcel C
    J Appl Physiol (1985); 1989 Jan; 66(1):179-83. PubMed ID: 2645262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidation of polyhydric alcohols by the prostate gland and seminal vesicle.
    WILLIAMS-ASHMAN HG; BANKS J; WOLFSON SK
    Arch Biochem Biophys; 1957 Dec; 72(2):485-94. PubMed ID: 13479132
    [No Abstract]   [Full Text] [Related]  

  • 47. [UTILIZATION OF FRUCTOSE BY HYDROGENOMONAS H 16. II. CRYPTIC BEHAVIOR TOWARDS GLUCOSE].
    GOTTSCHALK G
    Arch Mikrobiol; 1964 Jul; 49():96-102. PubMed ID: 14310169
    [No Abstract]   [Full Text] [Related]  

  • 48. Localization of glucose, gluconate, and glucose-6-phosphate oxidation systems in extracts of Pseudomonas fluorescens.
    EAGON RG
    Can J Microbiol; 1958 Feb; 4(1):1-7. PubMed ID: 13500263
    [No Abstract]   [Full Text] [Related]  

  • 49. Pseudomonas putrefaciens isolates from clinical specimens.
    Riley PS; Tatum HW; Weaver RE
    Appl Microbiol; 1972 Nov; 24(5):798-800. PubMed ID: 4565638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. EFFECTS OF ASPARTATE ON GROWTH AND ON THE SYNTHESIS OF ALPHA-AMYLASE IN PSEUDOMONAS SACCHAROPHILA.
    EISENSTADT JM; KLEIN HP
    J Bacteriol; 1964 Jun; 87(6):1355-63. PubMed ID: 14188713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Carbohydrate oxidation by Pseudomonas fluorescens. V. Evidence for gluconokinase and 2-ketogluconokinase.
    NARROD SA; WOOD WA
    J Biol Chem; 1956 May; 220(1):45-55. PubMed ID: 13319325
    [No Abstract]   [Full Text] [Related]  

  • 52. [Characteristics of distribution and substrate specificity of microorganisms oxidizing gaseous carbohydrates].
    Malashenko IuR; Romanovs'ka VO; Kostiuk MD; Galanova NV
    Mikrobiol Zh; 1971; 33(6):680-2. PubMed ID: 5153520
    [No Abstract]   [Full Text] [Related]  

  • 53. Oxidation of combined ingestion of glucose and fructose during exercise.
    Jentjens RL; Moseley L; Waring RH; Harding LK; Jeukendrup AE
    J Appl Physiol (1985); 2004 Apr; 96(4):1277-84. PubMed ID: 14657042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of dietary carbohydrate deprivation on the metabolism of intravenously administered fructose and glucose in man.
    CRAIG JW; MILLER M; MACKENZIE MS; WOODWARD H
    J Clin Invest; 1958 Jan; 37(1):118-26. PubMed ID: 13491719
    [No Abstract]   [Full Text] [Related]  

  • 55. Fructose as a carbohydrate source yields stable pH and redox parameters in microcarrier cell culture.
    Imamura T; Crespi CL; Thilly WG; Brunengraber H
    Anal Biochem; 1982 Aug; 124(2):353-8. PubMed ID: 7149234
    [No Abstract]   [Full Text] [Related]  

  • 56. Uronate oxidation by phytopathogenic pseudomonads.
    KILGORE WW; STARR MP
    Nature; 1959 May; 183(4672):1412-3. PubMed ID: 13657147
    [No Abstract]   [Full Text] [Related]  

  • 57. Oxidation of 3-deoxy-3-fluoro-D-glucose by cell-free extracts of Pseudomonas fluorescens.
    Taylor NF; White FH; Eisenthal R
    Biochem Pharmacol; 1972 Feb; 21(3):347-53. PubMed ID: 4622560
    [No Abstract]   [Full Text] [Related]  

  • 58. Oxidation of 1,5-anhydro-D-glucitol to 1,5-anhydro-D-fructose catalyzed by an enzyme from bacterial membranes.
    Nakamura T; Naito A; Takahashi Y; Akanuma H
    J Biochem; 1986 Mar; 99(3):607-13. PubMed ID: 3711037
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of exogenous glucose, fructose and galactose oxidation during exercise using 13C-labelling.
    Burelle Y; Lamoureux MC; Péronnet F; Massicotte D; Lavoie C
    Br J Nutr; 2006 Jul; 96(1):56-61. PubMed ID: 16869991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy conversion in autotrophically grown Pseudomonas saccharophila.
    Donawa AL; Ishaque M; Aleem HM
    Eur J Biochem; 1971 Jul; 21(2):292-300. PubMed ID: 4327453
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.