These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 13295232)

  • 1. Formation of 3-phosphoglyceric acid by carbon dioxide fixation with spinach leaf enzymes.
    JAKOBY WB; BRUMMOND DO; OCHOA S
    J Biol Chem; 1956 Feb; 218(2):811-22. PubMed ID: 13295232
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphoglyceric acid formation by carbon dioxide fixation in plant extracts.
    FAGER EW
    Biochem J; 1954 Jun; 57(2):264-72. PubMed ID: 13172178
    [No Abstract]   [Full Text] [Related]  

  • 3. The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide.
    WEISSBACH A; HORECKER BL; HURWITZ J
    J Biol Chem; 1956 Feb; 218(2):795-810. PubMed ID: 13295231
    [No Abstract]   [Full Text] [Related]  

  • 4. Amino acid-activating enzymes in isolated chloroplasts from spinach leaves.
    BOVE J; RAACKE ID
    Arch Biochem Biophys; 1959 Dec; 85():521-31. PubMed ID: 13803411
    [No Abstract]   [Full Text] [Related]  

  • 5. Conversion of carbon-14 dioxide to starch glucose during photosynthesis by spinach chloroplasts.
    GIBBS M; CYNKIN MA
    Nature; 1958 Nov; 182(4644):1241-2. PubMed ID: 13590296
    [No Abstract]   [Full Text] [Related]  

  • 6. Why abaxial illumination limits photosynthetic carbon fixation in spinach leaves.
    Sun J; Nishio J
    Plant Cell Physiol; 2001 Jan; 42(1):1-8. PubMed ID: 11158438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biosynthesis of higher fatty acids from acetates in isolated chloroplasts of Spinacia oleracea leaves].
    SMIRNOV BP
    Biokhimiia; 1960; 25():545-55. PubMed ID: 13831833
    [No Abstract]   [Full Text] [Related]  

  • 8. PHOSPHATIDIC ACID AND GLYCERIDE SYNTHESIS BY PARTICLES FROM SPINACH LEAVES.
    CHENIAE GM
    Plant Physiol; 1965 Mar; 40(2):235-43. PubMed ID: 14285018
    [No Abstract]   [Full Text] [Related]  

  • 9. The production of succinate from propionate by carbon dioxide fixation in sheep rumen epithelial tissue.
    PENNINGTON RJ; SUTHERLAND TM
    Biochem J; 1955 Aug; 60(4):xxxvii. PubMed ID: 13249982
    [No Abstract]   [Full Text] [Related]  

  • 10. The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves.
    Hodges DM; Forney CF
    J Exp Bot; 2000 Mar; 51(344):645-55. PubMed ID: 10938820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial purification of a pyrophosphatase from spinach leaves.
    FORTI G
    Biochim Biophys Acta; 1961 Mar; 48():200-2. PubMed ID: 13700907
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxalate synthesis in leaves is associated with root uptake of nitrate and its assimilation in spinach (Spinacia oleracea L.) plants.
    Liu XX; Zhou K; Hu Y; Jin R; Lu LL; Jin CW; Lin XY
    J Sci Food Agric; 2015 Aug; 95(10):2105-16. PubMed ID: 25243598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The proteins of green leaves. V. A cytoplasmic nucleoprotein from spinach and tobacco leaves.
    EGGMAN L; SINGER SJ; WILDMAN SG
    J Biol Chem; 1953 Dec; 205(2):969-83. PubMed ID: 13129275
    [No Abstract]   [Full Text] [Related]  

  • 14. Inorganic polyphosphate in spinach leaves.
    MIYACHI S
    J Biochem; 1961 Oct; 50():367-71. PubMed ID: 14474776
    [No Abstract]   [Full Text] [Related]  

  • 15. A carbon dioxide requirement for the metabolism of propionate in Rhodospirillum rubrum.
    CLAYTON RK; ELLINGSON EO; SHAW HE
    Arch Mikrobiol; 1957; 25(4):429-32. PubMed ID: 13403657
    [No Abstract]   [Full Text] [Related]  

  • 16. The enzymatic conversion of tryptophan to auxin by spinach leaves.
    WILDMAN SG; FERRI MG; BONNER J
    Arch Biochem; 1947 Apr; 13(1):131-44. PubMed ID: 20296071
    [No Abstract]   [Full Text] [Related]  

  • 17. Carbon dioxide fixation by phosphopyruvate carboxylase from spinach.
    SIU PM
    Biochim Biophys Acta; 1962 Oct; 63():520-2. PubMed ID: 13977786
    [No Abstract]   [Full Text] [Related]  

  • 18. Foliar uptake of arsenic nanoparticles by spinach: an assessment of physiological and human health risk implications.
    Natasha ; Shahid M; Dumat C; Khalid S; Rabbani F; Farooq ABU; Amjad M; Abbas G; Niazi NK
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20121-20131. PubMed ID: 30560534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonium reduces oxalate accumulation in different spinach (Spinacia oleracea L.) genotypes by inhibiting root uptake of nitrate.
    Liu X; Lu L; Chen Q; Ding W; Dai P; Hu Y; Yu Y; Jin C; Lin X
    Food Chem; 2015 Nov; 186():312-8. PubMed ID: 25976827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations.
    Zhu YG; Huang YZ; Hu Y; Liu YX
    Environ Int; 2003 Apr; 29(1):33-7. PubMed ID: 12605934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.