These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 13295315)

  • 1. The effect of temperature on oxidative phosphorylation with insect flight muscle mitochondria.
    SACKTOR B; SANBORN R
    J Biophys Biochem Cytol; 1956 Jan; 2(1):105-7. PubMed ID: 13295315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the mitochondria of the housefly, Musca domestica L. III. Requirements for oxidative phosphorylation.
    SACKTOR B
    J Gen Physiol; 1954 Jan; 37(3):343-59. PubMed ID: 13118105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature and sex dependent effects on cardiac mitochondrial metabolism in Atlantic cod (Gadus morhua L.).
    Rodnick KJ; Gamperl AK; Nash GW; Syme DA
    J Therm Biol; 2014 Aug; 44():110-8. PubMed ID: 25086981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate use and temperature effects in flight muscle mitochondria from an endothermic insect, the hawkmoth Manduca sexta.
    Wilmsen SM; Dzialowski E
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111439. PubMed ID: 37119960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative phosphorylation in insect sarcosomes.
    LEWIS SE; SLATER EC
    Biochem J; 1954 Oct; 58(2):207-17. PubMed ID: 13208573
    [No Abstract]   [Full Text] [Related]  

  • 6. The multilevel antibiotic-induced perturbations to biological systems: Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies.
    Renault D; Yousef H; Mohamed AA
    Environ Pollut; 2018 Oct; 241():821-833. PubMed ID: 29909308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The respiratory metabolism of insect flight muscle. I. Manometric studies of oxidation and concomitant phosphorylation with sarcosomes.
    SACKTOR B; COCHRAN DG
    Arch Biochem Biophys; 1958 Mar; 74(1):266-76. PubMed ID: 13522243
    [No Abstract]   [Full Text] [Related]  

  • 8. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.
    Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA
    Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative phosphorylation in an enzyme fraction from mitochondrial extracts.
    COOPER C; DEVLIN TM; LEHNINGER AL
    Biochim Biophys Acta; 1955 Sep; 18(1):159-60. PubMed ID: 13260269
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidative phosphorylation coupled with the oxidation of alpha-ketoglutarate by heart-muscle sarcosomes.
    SLATER EC; HOLTON FA
    Biochem J; 1954 Jan; 56(1):28-40. PubMed ID: 13126088
    [No Abstract]   [Full Text] [Related]  

  • 11. Cell structure and the metabolism of insect flight muscle.
    SACKTOR B
    J Biophys Biochem Cytol; 1955 Jan; 1(1):29-46. PubMed ID: 14381426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of some inhibitors of oxidative phosphorylation on the morphology and enzymic activities of mitochondria.
    DIANZANI MU; SCURO S
    Biochem J; 1956 Feb; 62(2):205-15. PubMed ID: 13293174
    [No Abstract]   [Full Text] [Related]  

  • 13. A simple and rapid assay of oxidative phosphorylation.
    CHANCE B; WILLIAMS GR
    Nature; 1955 Jun; 175(4469):1120-1. PubMed ID: 14394122
    [No Abstract]   [Full Text] [Related]  

  • 14. Some components of the oxidative phosphorylation system.
    JACOBS EE; SANADI DR
    Biochim Biophys Acta; 1955 Jun; 17(2):290-2. PubMed ID: 13239682
    [No Abstract]   [Full Text] [Related]  

  • 15. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The action of thyroxine on mitochondria and oxidative phosphorylation.
    TAPLEY DF; COOPER C; LEHNINGER AL
    Biochim Biophys Acta; 1955 Dec; 18(4):597-8. PubMed ID: 13304061
    [No Abstract]   [Full Text] [Related]  

  • 17. Dramatic changes in mitochondrial substrate use at critically high temperatures: a comparative study using
    Jørgensen LB; Overgaard J; Hunter-Manseau F; Pichaud N
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33563650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss.
    Sappal R; MacDougald M; Fast M; Stevens D; Kibenge F; Siah A; Kamunde C
    Aquat Toxicol; 2015 Aug; 165():51-63. PubMed ID: 26022556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrophotometric studies of oxidative phosphorylation.
    PULLMAN ME; RACKER E
    Science; 1956 Jun; 123(3208):1105-7. PubMed ID: 13324159
    [No Abstract]   [Full Text] [Related]  

  • 20. Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata.
    Paital B; Chainy GB
    J Therm Biol; 2014 Apr; 41():104-11. PubMed ID: 24679979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.