These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 1329544)

  • 1. Increase of apamin receptors in skeletal muscle induced by colchicine: possible role in myotonia.
    Behrens MI; Vergara C
    Am J Physiol; 1992 Oct; 263(4 Pt 1):C794-802. PubMed ID: 1329544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colchicine alters apamin receptors, electrical activity, and skeletal muscle relaxation.
    Vergara C; Ramírez B; Behrens MI
    Muscle Nerve; 1993 Sep; 16(9):935-40. PubMed ID: 7689170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural control of the expression of a Ca(2+)-activated K+ channel involved in the induction of myotonic-like characteristics.
    Ramírez BU; Behrens MI; Vergara C
    Cell Mol Neurobiol; 1996 Feb; 16(1):39-49. PubMed ID: 8714558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy.
    Renaud JF; Desnuelle C; Schmid-Antomarchi H; Hugues M; Serratrice G; Lazdunski M
    Nature; 1986 Feb 20-26; 319(6055):678-80. PubMed ID: 2419758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of skeletal muscle reinnervation on experimentally induced myotonia.
    Al-Sulaiman A; Al-Rajeh S; Iyer V
    Muscle Nerve; 1986 May; 9(4):364-6. PubMed ID: 2423870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The all-or-none role of innervation in expression of apamin receptor and of apamin-sensitive Ca2+-activated K+ channel in mammalian skeletal muscle.
    Schmid-Antomarchi H; Renaud JF; Romey G; Hugues M; Schmid A; Lazdunski M
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2188-91. PubMed ID: 2580309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal influences on the sensitivity of skeletal muscle to experimental myotonia.
    McArdle JJ; Guarino C; D'Alonzo AJ
    Exp Neurol; 1980 Aug; 69(2):365-72. PubMed ID: 7409050
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of denervation and colchicine treatment on the chloride conductance of rat skeletal muscle fibers.
    Camerino D; Bryant SH
    J Neurobiol; 1976 May; 7(3):221-8. PubMed ID: 1271053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ca2+-dependent slow K+ conductance in cultured rat muscle cells: characterization with apamin.
    Hugues M; Schmid H; Romey G; Duval D; Frelin C; Lazdunski M
    EMBO J; 1982; 1(9):1039-42. PubMed ID: 6329722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor-mediated endocytosis of apamin by liver cells.
    Strong PN; Evans WH
    Eur J Biochem; 1987 Mar; 163(2):267-73. PubMed ID: 3028799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoaffinity labeling of the K+-channel-associated apamin-binding molecule in smooth muscle, liver and heart membranes.
    Marquèze B; Seagar MJ; Couraud F
    Eur J Biochem; 1987 Dec; 169(2):295-8. PubMed ID: 2446869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible role of apamin-sensitive K+ channels in myotonic dystrophy.
    Behrens MI; Jalil P; Serani A; Vergara F; Alvarez O
    Muscle Nerve; 1994 Nov; 17(11):1264-70. PubMed ID: 7935548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic effects of colchicine on phosphate metabolism in innervated and denervated, slow and fast muscles of the rat.
    Graff GL; Gueuning C; Glupczynski Y; Goldschmidt P
    Arch Int Physiol Biochim; 1980 Oct; 88(4):393-405. PubMed ID: 6163409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent expression of the apamin-sensitive calcium-activated K+ channel in fast and slow rat skeletal muscle.
    Vergara C; Ramirez BU
    Exp Neurol; 1997 Jul; 146(1):282-5. PubMed ID: 9225762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proceedings: Neurotrophic control of skeletal muscle of the rat.
    Cangiano A; Fried JA
    J Physiol; 1974 May; 239(1):31P-33P. PubMed ID: 4137129
    [No Abstract]   [Full Text] [Related]  

  • 16. The apamin-sensitive Ca2+-dependent K+ channel molecular properties, differentiation and endogenous ligands in mammalian brain.
    Lazdunski M; Fosset M; Hughes M; Mourre C; Romey G; Schmid-Antomarchi H
    Biochem Soc Symp; 1985; 50():31-42. PubMed ID: 2428371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The production of denervation-like changes in rat muscle by colchicine, without interference with axonal transport or muscle activity.
    Cangiano A; Fried JA
    J Physiol; 1977 Feb; 265(1):63-84. PubMed ID: 66309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotrophic control of colchicine effects on muscle?
    Lomo T
    Nature; 1974 May; 249(456):473-4. PubMed ID: 4365362
    [No Abstract]   [Full Text] [Related]  

  • 19. Electromyographic and nerve conduction studies in the mdx mouse.
    Carter GT; Longley KJ; Entrikin RK
    Am J Phys Med Rehabil; 1992 Feb; 71(1):2-5. PubMed ID: 1739439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axonal transport blockade and denervation have qualitatively different effects upon skeletal muscle metabolism.
    Ramírez BU
    J Neurobiol; 1984 Mar; 15(2):119-26. PubMed ID: 6201592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.