These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 13303136)

  • 1. Some characteristics of a phenol-oxidizing Pseudomonas.
    HAMDY MK; SHERRER EL; RANDLES CI; WEISER HH; SHEETS WD
    Appl Microbiol; 1956 Mar; 4(2):71-5. PubMed ID: 13303136
    [No Abstract]   [Full Text] [Related]  

  • 2. [Facts concerning the possibility of using phenol as a carbon source for certain retinolytic bacteria].
    RAYNAUD M; DASTE P
    C R Seances Soc Biol Fil; 1962; 156():1489-93. PubMed ID: 13973344
    [No Abstract]   [Full Text] [Related]  

  • 3. Tracking of phenol degrading genotype.
    Kapley A; Purohit HJ
    Environ Sci Pollut Res Int; 2001; 8(2):89-90. PubMed ID: 11400643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in Pseudomonas putida F1.
    Spain JC; Zylstra GJ; Blake CK; Gibson DT
    Appl Environ Microbiol; 1989 Oct; 55(10):2648-52. PubMed ID: 2604403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600.
    Powlowski J; Shingler V
    Biodegradation; 1994 Dec; 5(3-4):219-36. PubMed ID: 7765834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of phenol and m-toluate in Pseudomonas sp. strain EST1001 and its Pseudomonas putida transconjugants is determined by a multiplasmid system.
    Kivisaar MA; Habicht JK; Heinaru AL
    J Bacteriol; 1989 Sep; 171(9):5111-6. PubMed ID: 2768199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of biodegradation of phenol and homologous compounds by Pseudomonas vesicularis and Staphylococcus sciuri strains.
    Mrozik A; Labuzek S
    Acta Microbiol Pol; 2002; 51(4):367-78. PubMed ID: 12708825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA in a denitrifying, phenol-degrading Pseudomonas species.
    Glöckler R; Tschech A; Fuchs G
    FEBS Lett; 1989 Jul; 251(1-2):237-40. PubMed ID: 2753161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of phenol by Pseudomonas putida ATCC 11172 in continuous culture at different ratios of biofilm surface to culture volume.
    Molin G; Nilsson I
    Appl Environ Microbiol; 1985 Oct; 50(4):946-50. PubMed ID: 4083889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates.
    Folsom BR; Chapman PJ; Pritchard PH
    Appl Environ Microbiol; 1990 May; 56(5):1279-85. PubMed ID: 2339883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of phenol degradation in Pseudomonas putida.
    Janke D; Pohl R; Fritsche W
    Z Allg Mikrobiol; 1981; 21(4):295-303. PubMed ID: 7293241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifying Pseudomonas sp.
    Lack A; Fuchs G
    Arch Microbiol; 1994; 161(2):132-9. PubMed ID: 8141643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning and sequencing of a phenol hydroxylase gene of Pseudomonas pseudoalcaligenes strain MH1: a bacterium able to mineralize various aromatic compounds.
    Zouari H; Moukha S; Labat M; Sayadi S
    Appl Biochem Biotechnol; 2002; 102-103(1-6):261-76. PubMed ID: 12396129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.
    Hinteregger C; Leitner R; Loidl M; Ferschl A; Streichsbier F
    Appl Microbiol Biotechnol; 1992 May; 37(2):252-9. PubMed ID: 1368244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state 13C nuclear magnetic resonance spectroscopy of simultaneously metabolized acetate and phenol in a soil Pseudomonas sp.
    Heiman AS; Cooper WT
    Appl Environ Microbiol; 1987 Jan; 53(1):156-62. PubMed ID: 3827242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors.
    Leedjärv A; Ivask A; Virta M; Kahru A
    Chemosphere; 2006 Sep; 64(11):1910-9. PubMed ID: 16581105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cloning and gene expression determining phenol breakdown in Pseudomonas putida strains].
    Kibisaar MA; Kazak LA; Khyrak RV; Khabikht IaK; Kheĭnaru AL
    Dokl Akad Nauk SSSR; 1989; 309(4):1002-4. PubMed ID: 2561419
    [No Abstract]   [Full Text] [Related]  

  • 18. Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600.
    Nordlund I; Powlowski J; Shingler V
    J Bacteriol; 1990 Dec; 172(12):6826-33. PubMed ID: 2254258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600.
    Powlowski J; Shingler V
    J Bacteriol; 1990 Dec; 172(12):6834-40. PubMed ID: 2254259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning, characterization, and regulation of a Pseudomonas pickettii PKO1 gene encoding phenol hydroxylase and expression of the gene in Pseudomonas aeruginosa PAO1c.
    Kukor JJ; Olsen RH
    J Bacteriol; 1990 Aug; 172(8):4624-30. PubMed ID: 2115872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.