BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1330783)

  • 1. Serine/threonine kinases and tyrosine phosphatases that act on the insulin receptor.
    Sale GJ
    Biochem Soc Trans; 1992 Aug; 20(3):664-70. PubMed ID: 1330783
    [No Abstract]   [Full Text] [Related]  

  • 2. Insulin action on metabolism.
    Heesom KJ; Harbeck M; Kahn CR; Denton RM
    Diabetologia; 1997 Oct; 40 Suppl 3():B3-9. PubMed ID: 9345638
    [No Abstract]   [Full Text] [Related]  

  • 3. Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation.
    Goldstein BJ
    Receptor; 1993; 3(1):1-15. PubMed ID: 8394171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein tyrosine kinases, protein serine kinases, and the mechanism of action of insulin.
    Rosen OM
    Harvey Lect; 1986-1987; 82():105-22. PubMed ID: 2966136
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphatidylinositol 3'-kinase associates with an insulin receptor substrate-1 serine kinase distinct from its intrinsic serine kinase.
    Cengel KA; Kason RE; Freund GG
    Biochem J; 1998 Oct; 335 ( Pt 2)(Pt 2):397-404. PubMed ID: 9761740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of Asp1191 for tyrosine kinase activity of the insulin receptor: functional difference of universally conserved Asp between tyrosine kinase and c-AMP dependent serine/threonine protein kinase.
    Iwanishi M; Haruta T; Takata Y; Imamura T; Kobayashi M
    Biochem Biophys Res Commun; 1993 Dec; 197(2):353-9. PubMed ID: 8267569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor-type protein tyrosine phosphatase epsilon (PTPepsilonM) is a negative regulator of insulin signaling in primary hepatocytes and liver.
    Nakagawa Y; Aoki N; Aoyama K; Shimizu H; Shimano H; Yamada N; Miyazaki H
    Zoolog Sci; 2005 Feb; 22(2):169-75. PubMed ID: 15738637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP.
    Galic S; Hauser C; Kahn BB; Haj FG; Neel BG; Tonks NK; Tiganis T
    Mol Cell Biol; 2005 Jan; 25(2):819-29. PubMed ID: 15632081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of the insulin receptor kinase with serine/threonine kinases in vitro.
    Haring HU; White MF; Kahn CR; Ahmad Z; DePaoli-Roach AA; Roach PJ
    J Cell Biochem; 1985; 28(2):171-82. PubMed ID: 3001107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine phosphatases and their possible interplay with tyrosine kinases.
    Fischer EH; Charbonneau H; Cool DE; Tonks NK
    Ciba Found Symp; 1992; 164():132-40; discussion 140-4. PubMed ID: 1395930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation.
    Greene MW; Garofalo RS
    Biochemistry; 2002 Jun; 41(22):7082-91. PubMed ID: 12033942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-tyrosine phosphatases and the regulation of insulin action.
    Goldstein BJ
    J Cell Biochem; 1992 Jan; 48(1):33-42. PubMed ID: 1316360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin-stimulated serine/threonine phosphorylation of the insulin receptor: paucity of threonine 1348 phosphorylation in vitro indicates the involvement of more than one serine/threonine kinase in vivo.
    Pillay TS; Siddle K
    Biochem Biophys Res Commun; 1991 Sep; 179(2):962-71. PubMed ID: 1654905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of lymphocyte function by protein phosphorylation.
    Perlmutter RM; Levin SD; Appleby MW; Anderson SJ; Alberola-Ila J
    Annu Rev Immunol; 1993; 11():451-99. PubMed ID: 8476569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on an insulin-stimulated insulin receptor serine kinase activity: separation of the kinase activity from the insulin receptor and its reconstitution back to the insulin receptor.
    Asamoah KA; Atkinson PG; Carter WG; Sale GJ
    Biochem J; 1995 Jun; 308 ( Pt 3)(Pt 3):915-22. PubMed ID: 8948451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in insulin-receptor tyrosine, serine and threonine phosphorylation as a result of substitution of tyrosine-1162 with phenylalanine.
    Tavaré JM; Dickens M
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):173-9. PubMed ID: 1848075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein serine/threonine kinases of the MAPK cascade.
    Graves JD; Campbell JS; Krebs EG
    Ann N Y Acad Sci; 1995 Sep; 766():320-43. PubMed ID: 7486680
    [No Abstract]   [Full Text] [Related]  

  • 18. The Cold Spring Harbor Laboratory meeting on tyrosine phosphorylation and cell signaling. Cold Spring Harbor, NY, USA, May 12-16, 1999.
    Roussel MF
    Biochim Biophys Acta; 2000 Feb; 1470(1):R17-20. PubMed ID: 10656991
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of phosphotyrosyl-IRS-1 level and insulin receptor tyrosine kinase activity on insulin-stimulated phosphatidylinositol 3, MAP, and S6 kinase activities.
    Wilden PA; Broadway DE
    J Cell Physiol; 1995 Apr; 163(1):9-18. PubMed ID: 7896903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperglycemia potentiates H(2)O(2) production in adipocytes and enhances insulin signal transduction: potential role for oxidative inhibition of thiol-sensitive protein-tyrosine phosphatases.
    Wu X; Zhu L; Zilbering A; Mahadev K; Motoshima H; Yao J; Goldstein BJ
    Antioxid Redox Signal; 2005; 7(5-6):526-37. PubMed ID: 15889998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.