These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1330783)

  • 41. Differential effects of flavonoids as inhibitors of tyrosine protein kinases and serine/threonine protein kinases.
    Hagiwara M; Inoue S; Tanaka T; Nunoki K; Ito M; Hidaka H
    Biochem Pharmacol; 1988 Aug; 37(15):2987-92. PubMed ID: 3164998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates.
    Maegawa H; Kashiwagi A; Fujita T; Ugi S; Hasegawa M; Obata T; Nishio Y; Kojima H; Hidaka H; Kikkawa R
    Biochem Biophys Res Commun; 1996 Nov; 228(1):122-7. PubMed ID: 8912646
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases.
    Hermiston ML; Xu Z; Majeti R; Weiss A
    J Clin Invest; 2002 Jan; 109(1):9-14. PubMed ID: 11781344
    [No Abstract]   [Full Text] [Related]  

  • 44. Modulation of insulin signaling by protein tyrosine phosphatases.
    Elchebly M; Cheng A; Tremblay ML
    J Mol Med (Berl); 2000; 78(9):473-82. PubMed ID: 11140373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. B cell antigen receptor (BCR)-mediated formation of a SHP-2-pp120 complex and its inhibition by Fc gamma RIIB1-BCR coligation.
    Nakamura K; Cambier JC
    J Immunol; 1998 Jul; 161(2):684-91. PubMed ID: 9670943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of human natural killer-cell lytic activity by serine/threonine phosphatases and kinases.
    Bajpai A; Brahmi Z
    Ann N Y Acad Sci; 1995 Sep; 766():216-9. PubMed ID: 7486662
    [No Abstract]   [Full Text] [Related]  

  • 47. Basic polycations activate the insulin receptor kinase and a tightly associated serine kinase.
    Biener Y; Zick Y
    Eur J Biochem; 1990 Nov; 194(1):243-50. PubMed ID: 1701386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inactivation of mitogen-activated protein kinases by a mammalian tyrosine-specific phosphatase, PTPBR7.
    Ogata M; Oh-hora M; Kosugi A; Hamaoka T
    Biochem Biophys Res Commun; 1999 Mar; 256(1):52-6. PubMed ID: 10066421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor.
    Ravichandran LV; Chen H; Li Y; Quon MJ
    Mol Endocrinol; 2001 Oct; 15(10):1768-80. PubMed ID: 11579209
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metformin (Glucophage) inhibits tyrosine phosphatase activity to stimulate the insulin receptor tyrosine kinase.
    Holland W; Morrison T; Chang Y; Wiernsperger N; Stith BJ
    Biochem Pharmacol; 2004 Jun; 67(11):2081-91. PubMed ID: 15135305
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions.
    Byrum CA; Walton KD; Robertson AJ; Carbonneau S; Thomason RT; Coffman JA; McClay DR
    Dev Biol; 2006 Dec; 300(1):194-218. PubMed ID: 17087928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of MAP kinase activation by the mitogen-induced threonine/tyrosine phosphatase PAC1.
    Ward Y; Gupta S; Jensen P; Wartmann M; Davis RJ; Kelly K
    Nature; 1994 Feb; 367(6464):651-4. PubMed ID: 8107850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Interaction of the insulin receptor with the receptor-like protein tyrosine phosphatases PTPalpha and PTPepsilon in living cells.
    Lacasa D; Boute N; Issad T
    Mol Pharmacol; 2005 Apr; 67(4):1206-13. PubMed ID: 15630078
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purification and characterization of an insulin-stimulated insulin receptor serine kinase.
    Carter WG; Sullivan AC; Asamoah KA; Sale GJ
    Biochemistry; 1996 Nov; 35(45):14340-51. PubMed ID: 8916921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A biochemical and functional characterization of diet-induced brain insulin resistance.
    Mielke JG; Taghibiglou C; Liu L; Zhang Y; Jia Z; Adeli K; Wang YT
    J Neurochem; 2005 Jun; 93(6):1568-78. PubMed ID: 15935073
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of insulin-stimulated protein serine/threonine kinases in CHO cells expressing human insulin receptors with point and deletion mutations.
    Dickens M; Chin JE; Roth RA; Ellis L; Denton RM; Tavaré JM
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):201-9. PubMed ID: 1329727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calpain inhibition impairs glycogen syntheses in HepG2 hepatoma cells without altering insulin signaling.
    Meier M; Klein HH; Kramer J; Drenckhan M; Schütt M
    J Endocrinol; 2007 Apr; 193(1):45-51. PubMed ID: 17400802
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions.
    Persson C; Carballeira N; Wolf-Watz H; Fällman M
    EMBO J; 1997 May; 16(9):2307-18. PubMed ID: 9171345
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The neuroprotective effect of 2-(3-pyridyl)-1-azabicyclo[3.2.2]nonane (TC-1698), a novel alpha7 ligand, is prevented through angiotensin II activation of a tyrosine phosphatase.
    Marrero MB; Papke RL; Bhatti BS; Shaw S; Bencherif M
    J Pharmacol Exp Ther; 2004 Apr; 309(1):16-27. PubMed ID: 14722323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent progress in our understanding of the mechanism of action of insulin.
    Sale GJ
    Int J Biochem; 1988; 20(9):897-908. PubMed ID: 2848730
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.