These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 1330823)
1. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Swanson MS; Winston F Genetics; 1992 Oct; 132(2):325-36. PubMed ID: 1330823 [TBL] [Abstract][Full Text] [Related]
2. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Hartzog GA; Wada T; Handa H; Winston F Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930 [TBL] [Abstract][Full Text] [Related]
3. Mutations in the SPT4, SPT5, and SPT6 genes alter transcription of a subset of histone genes in Saccharomyces cerevisiae. Compagnone-Post PA; Osley MA Genetics; 1996 Aug; 143(4):1543-54. PubMed ID: 8844144 [TBL] [Abstract][Full Text] [Related]
4. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Kaplan CD; Morris JR; Wu C; Winston F Genes Dev; 2000 Oct; 14(20):2623-34. PubMed ID: 11040216 [TBL] [Abstract][Full Text] [Related]
5. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Andrulis ED; Guzmán E; Döring P; Werner J; Lis JT Genes Dev; 2000 Oct; 14(20):2635-49. PubMed ID: 11040217 [TBL] [Abstract][Full Text] [Related]
6. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae. Malone EA; Fassler JS; Winston F Mol Gen Genet; 1993 Mar; 237(3):449-59. PubMed ID: 8483459 [TBL] [Abstract][Full Text] [Related]
7. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Krogan NJ; Kim M; Ahn SH; Zhong G; Kobor MS; Cagney G; Emili A; Shilatifard A; Buratowski S; Greenblatt JF Mol Cell Biol; 2002 Oct; 22(20):6979-92. PubMed ID: 12242279 [TBL] [Abstract][Full Text] [Related]
8. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. Crickard JB; Fu J; Reese JC J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex. Schwer B; Schneider S; Pei Y; Aronova A; Shuman S RNA; 2009 Jul; 15(7):1241-50. PubMed ID: 19460865 [TBL] [Abstract][Full Text] [Related]
10. Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Lindstrom DL; Squazzo SL; Muster N; Burckin TA; Wachter KC; Emigh CA; McCleery JA; Yates JR; Hartzog GA Mol Cell Biol; 2003 Feb; 23(4):1368-78. PubMed ID: 12556496 [TBL] [Abstract][Full Text] [Related]
11. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Swanson MS; Carlson M; Winston F Mol Cell Biol; 1990 Sep; 10(9):4935-41. PubMed ID: 2201908 [TBL] [Abstract][Full Text] [Related]
12. Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae. Lindstrom DL; Hartzog GA Genetics; 2001 Oct; 159(2):487-97. PubMed ID: 11606527 [TBL] [Abstract][Full Text] [Related]
13. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae. Cui P; Jin H; Vutukuru MR; Kaplan CD G3 (Bethesda); 2016 Aug; 6(8):2489-504. PubMed ID: 27261007 [TBL] [Abstract][Full Text] [Related]
14. Differential intrachromosomal hyper-recombination phenotype of spt4 and spt6 mutants of S. cerevisiae. Malagón F; Aguilera A Curr Genet; 1996 Jul; 30(2):101-6. PubMed ID: 8660457 [TBL] [Abstract][Full Text] [Related]
15. The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. Squazzo SL; Costa PJ; Lindstrom DL; Kumer KE; Simic R; Jennings JL; Link AJ; Arndt KM; Hartzog GA EMBO J; 2002 Apr; 21(7):1764-74. PubMed ID: 11927560 [TBL] [Abstract][Full Text] [Related]
16. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Swanson MS; Malone EA; Winston F Mol Cell Biol; 1991 Jun; 11(6):3009-19. PubMed ID: 1840633 [TBL] [Abstract][Full Text] [Related]
17. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation. Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817 [TBL] [Abstract][Full Text] [Related]
18. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5. Blythe A; Gunasekara S; Walshe J; Mackay JP; Hartzog GA; Vrielink A Protein Expr Purif; 2014 Aug; 100():54-60. PubMed ID: 24859675 [TBL] [Abstract][Full Text] [Related]
19. Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae. Prather D; Krogan NJ; Emili A; Greenblatt JF; Winston F Mol Cell Biol; 2005 Nov; 25(22):10122-35. PubMed ID: 16260625 [TBL] [Abstract][Full Text] [Related]
20. Isolation of murine SPT5 homologue: completion of the isolation and characterization of human and murine homologues of yeast chromatin structural protein complex SPT4, SPT5, and SPT6. Chiang PW; Stubbs L; Zhang L; Kurnit DM Genomics; 1998 Feb; 47(3):426-8. PubMed ID: 9480761 [No Abstract] [Full Text] [Related] [Next] [New Search]